Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8418, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110448

ABSTRACT

Marine sedimentary rocks deposited across the Neoproterozoic Cryogenian Snowball interval, ~720-635 million years ago, suggest that post-Snowball fertilization of shallow continental margin seawater with phosphorus accelerated marine primary productivity, ocean-atmosphere oxygenation, and ultimately the rise of animals. However, the mechanisms that sourced and delivered bioavailable phosphate from land to the ocean are not fully understood. Here we demonstrate a causal relationship between clay mineral production by the melting Sturtian Snowball ice sheets and a short-lived increase in seawater phosphate bioavailability by at least 20-fold and oxygenation of an immediate post-Sturtian Snowball ocean margin. Bulk primary sediment inputs and inferred dissolved seawater phosphate dynamics point to a relatively low marine phosphate inventory that limited marine primary productivity and seawater oxygenation before the Sturtian glaciation, and again in the later stages of the succeeding interglacial greenhouse interval.

2.
Environ Monit Assess ; 194(11): 813, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36131189

ABSTRACT

The availability of water for agricultural use in the savannah plateau of Adamawa, Cameroon, is addressed in this paper. Specific field tests coupled with climatic data analysis have helped to characterize the hydrological and hydrogeological conditions of water resources in a small catchment. An agricultural suitability map, based on the water availability during the dry season, is produced. Measured saturated hydraulic conductivities indicated an acceptable disposition of the soils for agriculture. The transmissivity values indicated moderate groundwater potential with mean annual recharge of 96 mm. The agricultural suitability map shows that only 8.8% of the basin area is very favorable for agriculture and that 51% of the basin is not suitable for agriculture, due to water scarcity during the dry season. Due to the considerable depth to the water table, pumping for irrigation purposes is not affordable for the local low-income farmers. Therefore, there is a need to implement adapted solutions for irrigation to support farmers' endeavors, such as the development of water retention basins or the construction of boreholes equipped with electric pumps supplied by solar energy for irrigation.


Subject(s)
Groundwater , Water , Agricultural Irrigation , Agriculture , Cameroon , Environmental Monitoring , Soil
3.
Environ Geochem Health ; 42(9): 2975-3013, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32112338

ABSTRACT

Hydro-geochemical data are required for understanding of water quality, provenance, and chemical composition for the 2,117,700 km2 Niger River Basin. This study presents hydro-geochemical analysis of the Benue River Basin, a major tributary of the Niger River. The distribution of major ions, Si, δD, and δ18O, trace and rare-earth elements (TE and REEs, respectively) composition in 86 random water samples, revealed mixing of groundwater with surface water to recharge shallow aquifers by July and September rains. Equilibration of groundwater with kaolinite and montmorillonites, by incongruent dissolution, imprints hydro-chemical signatures that vary from Ca + Mg - NO3 in shallow wells to Na + K - HCO3 in boreholes and surface waters, with undesirable concentrations of fluoride identified as major source of fluorosis in the local population. Our results further indicate non-isochemical dissolution of local rocks by water, with springs, wells and borehole waters exhibiting surface water-gaining, weakest water-rock interaction, and strongest water-rock interaction processes, respectively. Poorly mobile elements (Al, Th and Fe) are preferentially retained in the solid residue of incongruent dissolution, while alkalis, alkaline earth and oxo-anion-forming elements (U, Mo, Na, K, Rb, Ca, Li, Sr, Ba, Zn, Pb) are more mobile and enriched in the aqueous phase, whereas transition metals display an intermediate behavior. Trace elements vary in the order of Ba > Sr > Zn > Li > V > Cu > Ni > Co > As > Cr > Sc > Ti > Be > Pb > Cd, with potentially harmful elements such as Cd, As, and Pb mobilized in acidic media attaining near-undesirable levels in populated localities. With the exception of Y, REEs distribution in groundwater in the order of Eu > Sm > Ce > Nd > La > Gd > Pr > Dy > Er > Yb > Ho > Tb > Tm differs slightly with surface water composition. Post-Archean Average Australian Shale-normalized REEs patterns ranging from 1.08 to 199 point to the dissolution of silicates as key sources of trace elements to groundwater, coupled to deposition by eolian dust.


Subject(s)
Groundwater/chemistry , Metals, Rare Earth/analysis , Trace Elements/analysis , Cameroon , Environmental Monitoring/methods , Groundwater/analysis , Humans , Kaolin/chemistry , Oxygen Isotopes/analysis , Public Health , Rivers/chemistry , Water Wells
4.
Environ Monit Assess ; 188(9): 524, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27535404

ABSTRACT

With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) â‰« NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , Water Quality/standards , Cameroon , Cluster Analysis , Drinking Water/chemistry , Drinking Water/standards , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Geographic Mapping , Hydrology , Isotopes/analysis , Multivariate Analysis , Nitrates/analysis , Risk Assessment , Salinity
5.
Sci Rep ; 4: 6151, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25141868

ABSTRACT

The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos.


Subject(s)
Archaea/classification , Bacteria/classification , Biodiversity , Lakes/microbiology , Water Microbiology , Archaea/chemistry , Archaea/genetics , Bacteria/chemistry , Bacteria/genetics , Cameroon , Geography
6.
J Environ Sci (China) ; 26(4): 801-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-25079410

ABSTRACT

Rainwater characteristics can reveal emissions from various anthropogenic and natural sources into the atmosphere. The physico-chemical characteristics of 44 monthly rainfall events (collected between January and December 2012) from 4 weather stations (Bamenda, Ndop plain, Ndawara and Kumbo) in the Bamenda Highlands (BH) were investigated. The purpose was to determine the sources of chemical species, their seasonal inputs and suitability of the rainwater for drinking. The mean pH of 5 indicated the slightly acidic nature of the rainwater. Average total dissolved solids (TDS) were low (6.7 mg/L), characteristic of unpolluted atmospheric moisture/air. Major ion concentrations (mg/L) were low and in the order K(+) > Ca(2+) > Mg(2+) > Na(+) for cations and NO3(-)≫HCO3(-)>SO4(2-)>Cl(-)>PO4(3-)>F(-) for anions. The average rainwater in the area was mixed Ca-Mg-SO4-Cl water type. The Cl(-)/Na(+) ratio (1.04) was comparable to that of seawater (1.16), an indication that Na(+) and Cl(-) originated mainly from marine (Atlantic Ocean) aerosols. High enrichments of Ca(2+), Mg(2+) and SO(2-)4 to Na(+) ratios relative to seawater ratios (constituting 44% of the total ions) demonstrated their terrigenous origin, mainly from Saharan and Sahelian arid dusts. The K(+)/Na(+) ratio (2.24), which was similar to tropical vegetation ash (2.38), and NO3(-) was essentially from biomass burning. Light (< 100 mm) pre-monsoon and post-monsoon convective rains were enriched in major ions than the heavy (> 100 mm) monsoon rains, indicating a high contribution of major ions during the low convective showers. Despite the acidic nature, the TDS and major ion concentrations classified the rainwater as potable based on the WHO guidelines.


Subject(s)
Rain/chemistry , Cameroon , Drinking , Humans , Ions/analysis , Water Supply
7.
Environ Geochem Health ; 33(6): 559-75, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21373892

ABSTRACT

Groundwater quality of the Banana Plain (Mbanga, Njombe, Penja-Cameroon) was assessed for its suitability for drinking, domestic, and agricultural uses. A total of 67 groundwater samples were collected from open wells, springs, and boreholes. Samples were analyzed for physicochemical properties, major ions, and dissolved silica. In 95% of groundwater samples, calcium is the dominant cation, while sodium dominates in 5% of the samples. Eighty percent of the samples have HCO(3) as major anion, and in 20%, NO(3) is the major anion. Main water types in the study area are CaHCO(3), CaMgHCO(3), CaNaHCO(3), and CaNaNO(3)ClHCO(3). CO(2)-driven weathering of silicate minerals followed by cation exchange seemingly controls largely the concentrations of major ions in the groundwaters of this area. Nitrate, sulfate, and chloride concentrations strongly express the impact of anthropogenic activities (agriculture and domestic activities) on groundwater quality. Sixty-four percent of the waters have nitrate concentrations higher than the drinking water limit. Also limiting groundwater use for potable and domestic purposes are contents of Ca(2+), Mg(2+) and HCO(3) (-) and total hardness (TH) that exceed World Health Organization (WHO) standards. Irrigational suitability of groundwaters in the study area was also evaluated, and results show that all the samples are fit for irrigation. Groundwater quality in the Banana Plain is impeded by natural geology and anthropogenic activities, and proper groundwater management strategies are necessary to protect sustainably this valuable resource.


Subject(s)
Environmental Monitoring , Groundwater/analysis , Water Quality , Agricultural Irrigation/standards , Cameroon , Drinking Water/analysis , Drinking Water/chemistry , Drinking Water/standards , Groundwater/chemistry , Groundwater/standards , Water Pollutants, Chemical/analysis
8.
Water Sci Technol ; 61(5): 1317-39, 2010.
Article in English | MEDLINE | ID: mdl-20220254

ABSTRACT

Cameroon has been fully engaged with the Millennium Development Goals (MDGs) since their inception in 2000. This paper examines the situation of access to potable water and sanitation in Cameroon within the context of the Millennium Development Goals (MDGs), establishes whether Cameroon is on the track of meeting the MDGs in these domains and proposes actions to be taken to bring it closer to these objectives. Based on analyzed data obtained from national surveys, government ministries, national statistical offices, bibliographic research, reports and interviews, it argues that Cameroon will not reach the water and sanitation MGDs. While Cameroon is not yet on track to meet the targets of the MDGs for water and sanitation, it has made notable progress since 1990, much more needs to be done to improve the situation, especially in rural areas. In 2006, 70% of the population had access to safe drinking water and the coverage in urban centres is 88%, significantly better than the 47% in rural areas. However, rapid urbanization has rendered existing infrastructure inadequate with periurban dwellers also lacking access to safe drinking water. Sanitation coverage is also poor. In urban areas only 58% of the population has access to improved sanitation facilities, and the rate in rural areas is 42%. Women and girls shoulder the largest burden in collecting water, 15% of urban and 18% rural populations use improved drinking water sources over 30 minutes away. Cameroon faces the following challenges in reaching the water and sanitation MDGs: poor management and development of the resources, coupled with inadequate political will and commitment for the long term; rapid urbanization; urban and rural poverty and regulation and legislative lapses. The authors propose that: bridging the gap between national water policies and water services; recognizing the role played by Civil Society Organizations (CSOs) in the attainment of MDGs; developing a Council Water Resource Management Policy and Strategy (CWARMPS); organizing an institutional framework for the water and sanitation sector as well as completion and implementation of an Integrated Water Resources Management (IWRM) plan, would bring Cameroon closer to the water and sanitation MDGs.


Subject(s)
Sanitation , Water Supply/standards , Cameroon , Developing Countries , Female , Geography , Health Planning , Health Status Indicators , Humans , Male , Politics , Rural Population , Urban Population , Water , Water Purification/methods
9.
Environ Geochem Health ; 32(2): 147-63, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19548093

ABSTRACT

The 500,000 inhabitants of Mayo Tsanaga River Basin are vulnerable to a "silent" fluorosis from groundwater consumption. For the first time, the groundwater is investigated for the purpose of identifying the provenance of fluoride and estimating an optimal dose of fluoride in the study area. Based on the fluoride content of groundwater, fluorine and major oxides abundances in rocks from the study area, mean annual atmospheric temperature, and on-site diagnosis of fluorosis in children, the following results and conclusions are obtained: Fluoride concentration in groundwater ranges from 0.19 to 15.2 mg/l. Samples with fluoride content of <1.5 mg/l show Ca-HCO(3) signatures, while those with fluoride >1.5 mg/l show a tendency towards Na-HCO(3) type. Fluor-apatite and micas in the granites were identified as the main provenance of fluoride in the groundwater through water-rock interactions in an alkaline medium. The optimal fluoride dose in drinking water of the study area should be 0.7 mg/l, and could be adjusted downward to a level of 0.6 mg/l due to the high consumption rate of groundwater, especially during drier periods.


Subject(s)
Environmental Exposure/analysis , Environmental Monitoring , Fluorides/analysis , Fluorosis, Dental/epidemiology , Fresh Water/chemistry , Epidemiological Monitoring , Fluorides/chemistry , Geography , Geologic Sediments/chemistry , Geological Phenomena , Humans , Incidence , Silicon Dioxide/chemistry , Water Supply/analysis
SELECTION OF CITATIONS
SEARCH DETAIL