Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
BMC Bioinformatics ; 25(1): 148, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609877

ABSTRACT

Protein toxins are defense mechanisms and adaptations found in various organisms and microorganisms, and their use in scientific research as therapeutic candidates is gaining relevance due to their effectiveness and specificity against cellular targets. However, discovering these toxins is time-consuming and expensive. In silico tools, particularly those based on machine learning and deep learning, have emerged as valuable resources to address this challenge. Existing tools primarily focus on binary classification, determining whether a protein is a toxin or not, and occasionally identifying specific types of toxins. For the first time, we propose a novel approach capable of classifying protein toxins into 27 distinct categories based on their mode of action within cells. To accomplish this, we assessed multiple machine learning techniques and found that an ensemble model incorporating the Light Gradient Boosting Machine and Quadratic Discriminant Analysis algorithms exhibited the best performance. During the tenfold cross-validation on the training dataset, our model exhibited notable metrics: 0.840 accuracy, 0.827 F1 score, 0.836 precision, 0.840 sensitivity, and 0.989 AUC. In the testing stage, using an independent dataset, the model achieved 0.846 accuracy, 0.838 F1 score, 0.847 precision, 0.849 sensitivity, and 0.991 AUC. These results present a powerful next-generation tool called MultiToxPred 1.0, accessible through a web application. We believe that MultiToxPred 1.0 has the potential to become an indispensable resource for researchers, facilitating the efficient identification of protein toxins. By leveraging this tool, scientists can accelerate their search for these toxins and advance their understanding of their therapeutic potential.


Subject(s)
Algorithms , Toxins, Biological , Benchmarking , Discriminant Analysis , Machine Learning , Research Design
2.
Biomolecules ; 14(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38397411

ABSTRACT

Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media.


Subject(s)
Cryoprotective Agents , Ice , Freezing , Crystallization , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Antifreeze Proteins/chemistry
3.
Theriogenology ; 219: 49-58, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387124

ABSTRACT

Fish are ectotherms and many have an external reproductive mode. An environmental factor which triggers fish reproductive activity in fish is water temperature. However, climate change is causing increasingly frequent events in which the water temperature varies rapidly; as a result, both in hatchery and in natural conditions, fish sperm are exposed to varying environmental temperatures during their journey toward the egg. This study was based on two experiments: The first experiment was designed to determine how storage at 4 °C for four days affected the sperm functions of Atlantic salmon (Salmo salar) sperm collected by either abdominal massage (stripping/Pure) or testicular dissection (testicular macerate/Macerated). Further, computer-assisted semen analysis (CASA) was used to compare sperm velocity parameters (VCL, VSL, and VAP) and progressivity (STR, LIN, and WOB) after motility activation at different temperatures (8 and 16 °C) of sperm collected by both methods (Pure vs Macerated). The results show that spermatozoa from Macerated samples maintained a higher sperm function when stored at 4 °C for 4 days compared to Pure sperm samples. In the second experiment, CASA determined that all parameters for sperm velocity (VCL, VSL, and VAP) and progressivity (STR (50%/55%), LIN (25%-32%), and WOB (51%-57%) were affected by activation temperature (P < 0.05) and that the motility patterns after activation at 16 °C (P < 0.05), specifically the LIN or STR swimming trajectories of the sperm differed between the two groups. In conclusion, the sperm quality of testicular Macerate was superior to that of Pure sperm abdominal mass, based on the higher quality of various sperm functions during short-term storage. Moreover, there was a significant effect of the temperature of the activation medium on sperm speed and progressivity (motility pattern) in the collected samples of testicular macerate. The sensitivity of Salmo salar spermatozoa to elevated temperature varies markedly between collection methods (Pure and Macerated).


Subject(s)
Salmo salar , Sperm Motility , Male , Animals , Sperm Motility/physiology , Temperature , Semen , Swimming , Spermatozoa/physiology , Water
4.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38033292

ABSTRACT

Throughout evolution, pathogenic viruses have developed different strategies to evade the response of the adaptive immune system. To carry out successful replication, some pathogenic viruses encode different proteins that manipulate the molecular mechanisms of host cells. Currently, there are different bioinformatics tools for virus research; however, none of them focus on predicting viral proteins that evade the adaptive system. In this work, we have developed a novel tool based on machine and deep learning for predicting this type of viral protein named VirusHound-I. This tool is based on a model developed with the multilayer perceptron algorithm using the dipeptide composition molecular descriptor. In this study, we have also demonstrated the robustness of our strategy for data augmentation of the positive dataset based on generative antagonistic networks. During the 10-fold cross-validation step in the training dataset, the predictive model showed 0.947 accuracy, 0.994 precision, 0.943 F1 score, 0.995 specificity, 0.896 sensitivity, 0.894 kappa, 0.898 Matthew's correlation coefficient and 0.989 AUC. On the other hand, during the testing step, the model showed 0.964 accuracy, 1.0 precision, 0.967 F1 score, 1.0 specificity, 0.936 sensitivity, 0.929 kappa, 0.931 Matthew's correlation coefficient and 1.0 AUC. Taking this model into account, we have developed a tool called VirusHound-I that makes it possible to predict viral proteins that evade the host's adaptive immune system. We believe that VirusHound-I can be very useful in accelerating studies on the molecular mechanisms of evasion of pathogenic viruses, as well as in the discovery of therapeutic targets.


Subject(s)
Viral Proteins , Viruses , Viral Proteins/genetics , Viral Proteins/chemistry , Random Forest , Neural Networks, Computer , Algorithms , Viruses/genetics
5.
BioDrugs ; 37(6): 793-811, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37698749

ABSTRACT

Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.


Subject(s)
Antineoplastic Agents , Asparaginase , Biological Products , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Antineoplastic Agents/therapeutic use , Asparaginase/therapeutic use , Biological Factors , Biological Products/therapeutic use , Escherichia coli/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Engineering/methods
6.
Mol Divers ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37626205

ABSTRACT

Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.

7.
Front Pharmacol ; 14: 1208277, 2023.
Article in English | MEDLINE | ID: mdl-37426818

ABSTRACT

Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.

8.
Biology (Basel) ; 12(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37508354

ABSTRACT

Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.

9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108713

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Asparaginase/genetics , Asparaginase/therapeutic use , Escherichia coli/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Asparagine , Recombinant Fusion Proteins/therapeutic use , Antineoplastic Agents/therapeutic use
10.
Microb Pathog ; 180: 106122, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094756

ABSTRACT

Piscirickettsia salmonis is one of the main pathogens causing considerable economic losses in salmonid farming. The DNA gyrase of several pathogenic bacteria has been the target of choice for antibiotic design and discovery for years, due to its key function during DNA replication. In this study, we carried out a combined in silico and in vitro approach to antibiotic discovery targeting the GyrA subunit of Piscirickettsia salmonis. The in silico results of this work showed that flumequine (-6.6 kcal/mol), finafloxacin (-7.2 kcal/mol), rosoxacin (-6.6 kcal/mol), elvitegravir (-6.4 kcal/mol), sarafloxacin (-8.3 kcal/mol), orbifloxacin (-7.9 kcal/mol), and sparfloxacin (-7.2 kcal/mol) are docked with good affinities in the DNA binding domain of the Piscirickettsia salmonis GyrA subunit. In the in vitro inhibition assay, it was observed that most of these molecules inhibit the growth of Piscirickettsia salmonis, except for elvitegravir. We believe that this methodology could help to significantly reduce the time and cost of antibiotic discovery trials to combat Piscirickettsia salmonis within the salmonid farming industry.


Subject(s)
Fish Diseases , Piscirickettsia , Animals , Anti-Bacterial Agents/pharmacology , Piscirickettsia/genetics , DNA Gyrase/genetics , Fish Diseases/drug therapy , Fish Diseases/microbiology
11.
Med Oncol ; 40(5): 150, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37060469

ABSTRACT

L-Asparaginase is an antileukemic drug long approved for clinical use to treat childhood acute lymphoblastic leukemia, the most common cancer in this population worldwide. However, the efficacy and its use as a drug have been subject to debate due to the variety of adverse effects that patients treated with it present, as well as the prompt elimination in plasma, the need for multiple administrations, and high rates of allergic reactions. For this reason, the search for new, less immunogenic variants has long been the subject of study. This review presents the main aspects of the L-asparaginase enzyme from a structural, pharmacological, and clinical point of view, from the perspective of its use in chemotherapy protocols in conjunction with other drugs in the different treatment phases.


Subject(s)
Antineoplastic Agents , Drug Hypersensitivity , Drug-Related Side Effects and Adverse Reactions , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Asparaginase/therapeutic use , Asparaginase/adverse effects , Antineoplastic Agents/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
12.
3 Biotech ; 12(11): 286, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276451

ABSTRACT

Helicobacter pylori has become the causal agent of multiple forms of gastric disease worldwide, including gastric cancer. The enzyme l-asparaginase (ASNase) has been studied as a virulence factor. In this work, we performed an in silico investigation to characterize the immunological profile of H. pylori ASNase (HpASNase) to ascertain the possible implication of HpASNase immunogenicity in the H. pylori virulence mechanism. We applied a workflow based on bioinformatics tools, which, by calculating the relative frequency of immunogenic T-cell and B-cell epitopes, allowed us to predict the immunogenicity and allergenicity of HpASNase in silico. We also visualized the epitopes by mapping them into the native structure of the enzyme. We report for the first time the T-cell and B-cell epitope composition that contributes to the immunogenicity of this HpASNase, as well as the regions that could generate a hypersensitivity response in humans. ASNase from H. pylori resulted in highly immunogenic and allergenic. The high immunogenicity of HpASNase could imply the pathogenic mechanisms of H. pylori. This knowledge could be important for the development of new drugs against H. pylori infections. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03359-0.

13.
Biomolecules ; 12(6)2022 06 09.
Article in English | MEDLINE | ID: mdl-35740930

ABSTRACT

This study aimed to analyze the effects on the lipidome of juvenile Oncorhynchus mykiss muscle fed 90% Brassica napus "rapeseed" oil and different amounts of Durvillaea antarctica "Cochayuyo" meal (1.5, 3 and 6%) as a replacement for cellulose. The analysis allowed for the identification of 329 lipids, mainly represented by phospholipids and fatty esters. The inclusion of Brassica napus oil significantly increased the levels of C18:2 species and fatty esters of hydroxylated fatty acids, which could play a bioactive role in human health. One of the most abundant lipids in all fillets was Phosphatidylcholine 33:6, which, according to the literature, could be considered a biomarker for the identification of Oncorhynchus mykiss. In all experimental diets, the species Phosphatidylethanolamine 15:1-18:24 showed four-fold higher levels than the control; increments of n-3- and n-6-rich phospholipids were also observed. Diets containing Durvillaea antarctica meal did not generate more significant variation in fish muscle phospholipids relative to the muscle of the rapeseed-oil-only group. These lipid species consist of medium- and long-chain fatty acids with different degrees of unsaturation. Still, it appears that the rapeseed oil masks the lipid contribution of the meal, possibly due to the low levels of total lipids in the macroalgae.


Subject(s)
Oncorhynchus mykiss , Animals , Esters , Fatty Acids , Lipidomics , Muscles , Phospholipids , Rapeseed Oil
14.
Mol Biol Rep ; 49(7): 6741-6751, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35277787

ABSTRACT

Cancer stem cells (CSCs) are a small subpopulation of immature cells located in the tumor mass. These cells are responsible for tumor development, proliferation, resistance and spreading. CSCs are characterized by three unique features: the ability to self-renew, differentiation and tumor formation. CSCs are similar to stem cells, but they differ in the malignant phenotype. CSCs become immortal and survive harsh environmental conditions such as hypoxia, starvation and oxidative stress. However, this harsh tumor microenvironment induces the activation of autophagy, which further increases the CSCs stemness profile, and all these features further increase tumorigenicity and metastasis capacity. Autophagy is induced by the extracellular and cellular microenvironment. Hypoxia is one of the most common factors that highly increases the activity of autophagy in CSCs. Therefore, hypoxia-induced autophagy and CSCs proliferation should be elucidated in order to find a novel cure to defeat cancer cells (CSCs and non-CSCs). The remaining challenges to close the gap between the laboratory bench and the development of therapies, to use autophagy against CSCs in patients, could be addressed by adopting a 3D platform to better-mimic the natural environment in which these cells reside. Ultimately allowing to obtain the blueprints for bioprocess scaling up and to develop the production pipeline for safe and cost-effective autophagy-based novel biologics.


Subject(s)
Neoplasms , Neoplastic Stem Cells , Autophagy , Humans , Hypoxia/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Tumor Microenvironment
15.
Article in English | MEDLINE | ID: mdl-35235839

ABSTRACT

The regulation of sperm motility is controlled by several variables, including mainly ion concentrations. In fish, Ca2+ concentrations play an important role in the regulation of sperm motility, and several reports highlight the importance of certain Ca2+ channels in the regulation of this cell function. CatSper is a calcium channel scarcely studied in fish. In the species Salmo salar, it has been shown that it is key in the regulation of sperm motility. Taking into account the relevance of this channel in sperm activation in fish, in this study we evaluated the presence and probable functionality of this channel in the class Actinopterygii. For this purpose, a rational bioinformatic analysis was carried out, which had been previously validated using in vitro techniques by our group. The bioinformatic analysis of the present work revealed that the functionality of CatSper of the species of the class Actinopterygii could be exclusive to freshwater and anadromous fish species. The results of this study showed that only some anadromous and freshwater fish species contain 11 subunits of the CatSper channel, which are enough to trigger sperm motility. Consequently, this study provides new data for a better understanding of the sperm activation mechanism in fish.


Subject(s)
Computational Biology , Sperm Motility , Animals , Cell Membrane , Fishes , Fresh Water , Male
16.
J Mater Chem B ; 10(19): 3587-3600, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35262120

ABSTRACT

Antimicrobial peptides (AMPs) are ubiquitous host defense peptides characterized by their antibiotic activity and lower propensity for developing resistance compared to classic antibiotics. While several AMPs have shown activity against antibiotic-sensitive and even multi-drug resistant strains, some bottlenecks to further development and clinical applications are still present, for instance, low antimicrobial activity, instability under physiological conditions, systemic toxicity and the potential for compromising the innate host defense immunity. Conjugation to molecules such as proteins, synthetic polymers, small molecules and nanoparticles are strategies under investigation to boost the therapeutic efficacy of AMPs. This review focuses on the design and application of AMPs' conjugates. In silico tools for creating new AMPs and AMPs' conjugates and their clinical development are also discussed. Furthermore, key future considerations regarding the major achievements and challenges of AMPs' conjugates in the antimicrobial resistance context are presented as a take-home message.


Subject(s)
Anti-Infective Agents , Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Peptides , Nanoparticles/chemistry
17.
Comput Biol Med ; 145: 105414, 2022 06.
Article in English | MEDLINE | ID: mdl-35358751

ABSTRACT

Voltage-gated sodium channel activity has long been associated with several diseases including epilepsy, chronic pain, cardiovascular diseases, cancers, immune system, neuromuscular and respiratory disorders. The strong participation of these channels in the development of diseases makes them excellent promising therapeutic targets. Voltage-gated Na+ channel blocking peptides come from a wide source of organisms such as venoms. However, the in vitro and in vivo identification and validation of these peptides are time-consuming and resource-intensive. In this work, we developed a bioinformatics tool called PEP-PREDNa + for the highly specific prediction of voltage-gated Na+ channel blocking peptides. PEP-PREDNa+ is based on the random forest algorithm, which presented excellent performance measures during the cross-validation (sensitivity = 0.81, accuracy = 0.83, precision = 0.85, F-score = 0.83, specificity = 0.86, and Matthew's correlation coefficient = 0.67) and testing (sensitivity = 0.88, accuracy = 0.92, precision = 0.96, F-score = 0.91, specificity = 0.96, and Matthew's correlation coefficient = 0.84) phases. The PEP-PREDNa + tool could be very useful in accelerating and reducing the costs of the discovery of new voltage-gated Na+ channel blocking peptides with therapeutic potential.


Subject(s)
Ion Channel Gating , Peptides , Machine Learning , Peptides/chemistry
18.
Int J Pept Res Ther ; 28(1): 35, 2022.
Article in English | MEDLINE | ID: mdl-34934411

ABSTRACT

Viral antigens are key in the development of vaccines that prevent or eradicate infections caused by these pathogens. Bioinformatics tools are modern alternatives that facilitate the discovery of viral antigens, reducing the costs of experimental assays. We developed a bioinformatics tool called VirVACPRED, which is highly efficient in predicting viral antigens. In this study, we obtained a model based on the gradient boosting classifier, which showed high performance during the training, leave-one-out cross-validation (accuracy = 0.7402, sensitivity = 0.7319, precision = 0.7503, F1 = 0.7251, kappa = 0.4774, Matthews correlation coefficient = 0.4981) and testing (accuracy = 0.8889, sensitivity = 1.0, precision = 0.8276, F1 = 0.9057, kappa = 0.7734, Matthews correlation coefficient = 0.7941). VirVACPRED is a robust tool that can be of great help in the search and proposal of new viral antigens, which can be considered in the development of future vaccines against infections caused by viruses.

19.
Front Physiol ; 12: 705256, 2021.
Article in English | MEDLINE | ID: mdl-34603075

ABSTRACT

Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.

20.
J Med Biochem ; 40(1): 26-32, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33584137

ABSTRACT

BACKGROUND: The application of the Lean methodology in clinical laboratories can improve workflow and user satisfaction through the efficient delivery of analytical results. The purpose of this study was to optimise delivery times of the test results at a clinical laboratory, using Lean management principles in the pre-analytical phase. METHODS: A prospective study with a quasi-experimental design was implemented. Staff functions were restructured and sample flows were modified. Delivery times of clinical results (glucose and haematocrit; 6648 data) from the Medicine and Adult Emergency services for years 2017 and 2018 were compared. RESULTS: A reduction (p < 0.05) in turnaround times in the delivery of glucose test results at the adult emergency service was observed (84 to 73 min, 13%, pre and post). In addition, there was a non-significant reduction in the turnaround times for glucose (Medicine) and haematocrit in both services. In the analytical and post-analytical phase (not intervened), an increase in turnaround times was observed in some cases. CONCLUSIONS: Other studies have indicated that the application of the Lean methodology in clinical laboratories improves workflow, increasing effectiveness and efficiency. This study showed an improvement in the delivery time of test results (glucose - Emergency), giving rise to a culture of cooperation and continuous improvement. It would, however, be essential to address the management model integrating the analytical and post-analytical phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...