Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639135

ABSTRACT

Exosomes (EXOs) were given attention as an extracellular vesicle (EV) with a pivotal pathophysiological role in the development of certain neurodegenerative disorders (NDD), such as Parkinson's and Alzheimer's disease (AD). EXOs have shown the potential to carry pathological and therapeutic cargo; thus, researchers have harnessed EXOs in drug delivery applications. EXOs have shown low immunogenicity as natural drug delivery vehicles, thus ensuring efficient drug delivery without causing significant adverse reactions. Recently, EXOs provided potential drug delivery opportunities in AD and promising future clinical applications with the diagnosis of NDD and were studied for their usefulness in disease detection and prediction prior to the emergence of symptoms. In the future, the microfluidics technique will play an essential role in isolating and detecting EXOs to diagnose AD before the development of advanced symptoms. This review is not reiterative literature but will discuss why EXOs have strong potential in treating AD and how they can be used as a tool to predict and diagnose this disorder.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Exosomes/chemistry , Exosomes/pathology , Animals , Humans
2.
Drug Dev Ind Pharm ; 47(7): 1029-1037, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34590548

ABSTRACT

The nanotechnology approach has been recently adopted to provide more reliable, effective, controlled, and safe drug delivery systems. Nanostructured materials have gained great interest, including siliceous and carbonaceous nanoparticles. The effectiveness of mesoporous carbon nanoparticles (MCNs) in tumor imaging, targeting, and treatment is urging for more future studies. MCNs possess superior properties such as their biocompatibility, large surface area, large pore volume, tunability, and more responsive behavior to internal and external release triggers. These outstanding features make MCNs more applicable for stimuli-responsive drug delivery than the conventional forms of mesoporous silica nanoparticles (MSNs) and other carbon nanoparticles. In this review, we outlined the latest updates regarding the safety, benefits, and potential applications of MCNs.


Subject(s)
Carbon , Nanoparticles , Drug Carriers , Drug Delivery Systems , Porosity , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...