Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13728, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608052

ABSTRACT

Oxidative desulfurization (ODS) is considered to be one of the most promising desulfurization processes as it is energy-efficient and requires mild operating conditions. In this study, a novel green synthesized Al- based metal-organic framework with high surface area has been synthesized hydrothermally using waste polyethylene terephthalate bottles (PET) as a source of terephthalic acid as an organic linker. The prepared Al based MOF have been characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The catalytic activity of the prepared Al-MOF was evaluated in the oxidative desulfurization (ODS) of both modeled and real crude oil samples. The different operating parameters (temperature, time, catalyst dose, oxidant loading and sonication) on the ODS performance have been optimized. The optimal conditions for maximum removal of thiophene from modeled oil samples were found to be 30 min, 0.5 g of catalyst and 1:3 oil to oxidant ratio. Under the optimized conditions, sulfur removal in real oil samples obtained from Alexandria petroleum company was 90%. The results revealed that, the presented approach is credited to cost-effectiveness, environmental benignity, and ease of preparation, predicting great prospects for desulfurization of fuel oils on a commercial level.

2.
Acta Chim Slov ; 68(2): 304-312, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34738118

ABSTRACT

Natural gas is a mixture that is widely used in the industries. Knowledge of its thermodynamic properties is essential for evaluating the process and equipment performance. This paper quantifies the energy that can be extracted from natural gas using a turbo expander. Natural gases of wide-ranging compositions collected from 6 different gas fields in Egypt were investigated based on energy and exergy analysis. The study was conducted using MATLAB. Numerous simulation runs were made by taking various typical feed compositions classified as lean and rich. The effects of increasing the amount of C1, C5 in the feed stream on the efficiency of energy utilization are presented. A validation analysis was performed. The results show similar trends and good agreements. It was concluded from the results that when the concentration of methane in the gas mixture increase, the exergetic efficiency decreases. The results also show that the values of thermodynamic properties depend on the relative amount of heavy components in the feed stream.

3.
Environ Sci Pollut Res Int ; 26(32): 32804-32814, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31502052

ABSTRACT

Biodiesel appears to be a possible substitute for non-renewable fossil fuels; however, its production requires the presence of a catalyst to accelerate the reaction. Serving the purpose of finding effective, cheap and environmentally safe, heterogeneous catalysts, this research used the fig leaves in three different forms, calcined, activated by KOH, and activated by both K2CO3 and CaCO3. Their efficiency in biodiesel synthesis, from spent cooking oil, was examined and compared with that of activated carbon which has been previously investigated. The properties of different catalyst forms were specified using X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy. Operating parameters studied for the three catalysts were reaction time (from 30 to 180 min), alcohol-to-oil molar ratio (from 4:1 to 10:1), catalyst loading (from 0.5 to 5% by wt.), and stirring speed (from 100 to 400 rpm). The increase in reaction time, molar ratio, and catalyst loading proved to have a favorable effect on % conversion to biodiesel but to a certain degree; increasing the stirring speed augmented the conversion. At optimum conditions (2 h of heating, 6:1 alcohol-to-oil molar ratio, 1% by wt. catalyst loading, and 400 rpm stirring), fig leaves activated by KOH provided the highest conversion to biodiesel (92.73%). The measured properties of the produced biodiesel (density, viscosity, flash point, cloud point, and pour point) yielded encouraging results. Graphical Abstract.


Subject(s)
Biofuels/analysis , Cooking , Ficus , Catalysis , Esterification , Plant Leaves/chemistry , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
4.
Ecotoxicol Environ Saf ; 145: 57-68, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28708982

ABSTRACT

Polyethyleneterephthalate (PET) is an important component of post-consumer plastic waste. This study focuses on the potential of utilizing "waste-treats-waste" by synthesis of graphene using PET bottle waste as a source material. The synthesized graphene is characterized by SEM, TEM, BET, Raman, TGA, and FT-IR. The adsorption of methylene blue (MB) and acid blue 25 (AB25) by graphene is studied and parameters such as contact time, adsorbent dosage were optimized. The Response Surface Methodology (RSM) is applied to investigate the effect of three variables (dye concentration, time and temperature) and their interaction on the removal efficiency. Adsorption kinetics and isotherm are followed a pseudo-second-order model and Langmuir and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of dye is spontaneous and endothermic in nature. The plastic waste can be used after transformation into valuable carbon-based nanomaterials for use in the adsorption of organic contaminants from aqueous solution.


Subject(s)
Coloring Agents/analysis , Graphite/chemistry , Plastics/chemistry , Polyethylene Terephthalates/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Green Chemistry Technology , Kinetics , Recycling , Temperature , Wastewater/chemistry
5.
J Air Waste Manag Assoc ; 67(3): 358-370, 2017 03.
Article in English | MEDLINE | ID: mdl-27700617

ABSTRACT

Nowadays our planet suffers from an accumulation of plastic products that have the potential to cause great harm to the environment in the form of air, water, and land pollution. Plastic water bottles have become a great problem in the environment because of the large numbers consumed throughout the world. Certain types of plastic bottles can be recycled but most of them are not. This paper describes an economical solvent-free process that converts polyethylene terephthalate (PET) bottles waste into carbon nanostructure materials via thermal dissociation in a closed system under autogenic pressure together with additives and/or catalyst, which can act as cluster nuclei for carbon nanostructure materials such as fullerenes and carbon nanotubes. This research succeeded in producing and controlling the microstructure of various forms of carbon nanoparticles from the PET waste by optimizing the preparation parameters in terms of time, additives, and amounts of catalyst. IMPLICATIONS: Plastic water bottles are becoming a growing segment of the municipal solid waste stream in the world; some are recycled but many are left in landfill sites. Recycling PET bottles waste can positively impact the environment in several ways: for instance, reduced waste, resource conservation, energy conservation, reduced greenhouse gas emissions, and decreasing the amount of pollution in air and water sources. The main novelty of the present work is based on the acquisition of high-value carbon-based nanomaterials from PET waste by a simple solvent-free chemical technique. Thus, the prepared materials are considered to be promising, cheap, eco-friendly materials that may find use in different applications.


Subject(s)
Nanotubes, Carbon/chemistry , Polyethylene Terephthalates/chemistry , Waste Management/methods , Environment , Plastics , Recycling , Solid Waste , Water
6.
Arch Pharm (Weinheim) ; 337(1): 42-54, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14760627

ABSTRACT

New series of 3, 5-bis(substituted benzylidene)-4-piperidones, 2, 7-bis(substituted benzylidene)cycloheptanones, 1, 5-bis(substituted phenyl)-1, 4-pentadien-3-ones, 1, 7-bis(substituted phenyl)-1, 6-heptadien-3, 5-diones, 1, 1-bis(substituted cinnamoyl)-cyclopentanes, and 1, 1-bis(substituted cinnamoyl)cyclohexanes have been synthesized and tested for their antioxidant activity. Among the tested compounds, compounds II(4), II(9) II(10), II(11), V(1), and V(4) exhibited higher free radical scavenger activity with % inhibition values of 90.71, 91.24, 96.91, 94.26, 99.23, and 99.85%, respectively. Moreover, compound V(1) is the safest member toward peripheral multinuclear neutrophils (PMNs) with a % viability value of 91%. Detailed synthesis, spectroscopic, and biological data are reported.


Subject(s)
Anticarcinogenic Agents/chemical synthesis , Antioxidants/chemical synthesis , Curcumin/analogs & derivatives , Forecasting , Adenosine Triphosphate , Alkadienes/chemical synthesis , Alkadienes/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Curcumin/chemistry , Cycloheptanes/chemical synthesis , Cycloheptanes/toxicity , Cyclohexanes/chemical synthesis , Cyclohexanes/toxicity , Cyclopentanes/chemical synthesis , Cyclopentanes/toxicity , Female , Free Radical Scavengers/chemical synthesis , Free Radicals/chemistry , Humans , Luminescent Measurements , Male , Molecular Structure , Neutrophils/cytology , Neutrophils/drug effects , Piperidones/chemical synthesis , Piperidones/toxicity
7.
Arch Pharm (Weinheim) ; 336(10): 445-55, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14582121

ABSTRACT

A 1, 4-dihydropyridine <--> pyridinium salt type redox system is described as a general and flexible method for site-specific and sustained delivery of drugs to the brain. This concept was used in the present investigation as a model to deliver an alkylating antitumor agent into the brain. A bis-(chloroethyl)amine drug was hooked to 1, 4-dihydropyridine chemical delivery system (CDS) through an amide linkage. Five new-target compounds (23-27) of the 1, 4-dihydropyridine CDS type were synthesized through the reduction of five new pyridinium quaternary intermediates (18-22). The synthesized 1, 4-dihydropyridines were subjected to various chemical and biological investigations to evaluate their ability to cross the blood-brain barrier (BBB), and to be oxidized biologically into their corresponding quaternary compounds. The in vitro oxidation studies showed that 1-benzyl-3-[N-[2-bis(2-chloroethyl)aminoethyl]-carbamoyl]-1, 4-dihydropyridine (23) and 1-(4-nitrobenzyl)-3-[N-[2-bis(2-chloroethyl)aminoethyl ]carbamoyl]-1, 4-dihydropyridine (27) could be oxidized into their corresponding quaternary compounds 18 and 22 respectively, at an adequate rate, which ensure the release of the carried anticancer drug. The in vivo studies showed that compound 23 was able to cross the BBB at detectable concentrations. On the other hand, the in vitro alkylation activity studies revealed that 1-(4-nitrobenzyl)-3-[N-[2-bis(2-chloroethyl)aminoethyl]carbamoyl]pyridinium bromide (22) is an alkylating agent with activity comparable to the known drug chlorambucil.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain/metabolism , Dihydropyridines/chemical synthesis , Animals , Blood-Brain Barrier/metabolism , Dihydropyridines/chemistry , Dihydropyridines/pharmacokinetics , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Male , Molecular Structure , Oxidation-Reduction , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...