Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Toxicol Appl Pharmacol ; : 117037, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004143

ABSTRACT

BACKGROUND: Fibromyalgia (FM) is a complex syndrome with somatic symptoms connected to the operational state of muscles. Although radiotherapy is a cornerstone in cancer treatment, it is implicated in the aggravation of FM. Lately, formulation of medicines in nano-forms become of great prominence due to their prospective applications in medicine. So, this study aimed to assess possible therapeutic benefits of formulating pregabalin in a nono-form (N-PG) for managing FM during exposure to gamma radiation. METHODS: Gamma rays administered in fractionated doses (2 Gy/day) to male rats after one hour of s.c. injection of reserpine (1 mL/kg per day) to induce FM, then treated with single daily dose of (30 mg/kg, p.o.) PG or N-PG for ten successive days. Rats were subjected to behavioral tests, then sacrificed to obtain serum and gastrocnemius muscles. RESULTS: N-PG significantly antagonized reserpine-induced FM as proved by; the immobility and performance times in forced swim and rotarod performance tests, respectively were restored near to the normal time, serum IL-8 and MCP-1 chemokines were nearby the normal levels, mitigated oxidative stress through increasing total thiol, Sirt3, CAT enzyme and decreasing COX-1, inhibition of inflammation via IL-1ß and MIF significant reduction, it possessed anti-apoptotic effect verified by decreasing PARP-1 and increasing Bcl-XL, gastrocnemius muscles had minimal fibrosis levels as seen after Masson trichrome staining. Histopathological results were coincidence with biochemical inspection. CONCLUSION: This study identifies N-PG as a novel drug that could be of a value in the management of FM particularly in cancer patients undergoing radiotherapy.

2.
Cell Biochem Biophys ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907940

ABSTRACT

Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.

3.
Med Oncol ; 41(7): 171, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849654

ABSTRACT

Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.


Subject(s)
Multiple Myeloma , RNA, Long Noncoding , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics
5.
J Mycol Med ; 34(3): 101489, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38925022

ABSTRACT

Dermatophytosis is a critical sort of skin infection caused by dermatophytes. The long-term treatment of such skin infections may be improved through the application of nanotechnology. This study aimed to prepare griseofulvin zinc Nanohybrid emulsion (GF-Zn-NHE) to improve griseofulvin activity against dermatophytes and some opportunistic pathogenic yeasts and bacteria. The GF-Zn-NHE is prepared by ultra-homogenization ultra-sonication strategies and validated by UV-visible spectroscopy analysis that confirms presences of griseofulvin and Zn-NPs peaks at 265 and 360 nm, respectively. The GF-Zn-NHE has mean distribution size 50 nm and zeta potential in the range from -40 to -36 mV with no significant changes in size distribution and particle size within 120 day ageing. Fourier transform infrared spectroscopy spectrum confirmed the presence of griseofulvin and Zn-NPs stretching vibration peaks. Gamma ray has a negative influence on GF-Zn-NE production and stability. GF-Zn-NHE drug release 95% up to 24 h and 98% up to 72 h of GF was observed and Zinc 90% up to 24 h and 95% up to 72 h, respectively. High antimicrobial activity was observed with GF-Zn-NHE against dermatophytic pathogens in compare with GF, GF-NE, zinc nitrate and ketoconazole with inhibition zone ranged from 14 to 36 mm. The results have shown that the MIC value for Cryptococcus neoformans, Prophyromonas gingivalis and Pseudomonas aeruginosa is 0.125 mg ml -1 and for Trichophyton rubrum, L. bulgaricus and Escherichia coli value is 0.25 mg ml -1 and for Candida albicans, Malassezia furfur and Enterococcus faecalis is 0.5 mg ml -1 and finally 1 mg ml -1 for Streptococcus mutans. TEM of treated Cryptococcus neoformans cells with GF-Zn-NHE displayed essentially modified morphology, degradation, damage of organelles, vacuoles and other structures.

6.
J Biochem Mol Toxicol ; 38(6): e23719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764138

ABSTRACT

Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.


Subject(s)
Dendritic Cells , Exosomes , Immune Checkpoint Inhibitors , Immunotherapy , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Exosomes/immunology , Exosomes/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, Chimeric Antigen/immunology , Neoplasms/immunology , Neoplasms/therapy , Cancer Vaccines/immunology , Animals
7.
Cell Biochem Funct ; 42(4): e4029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773914

ABSTRACT

Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Receptors, Pattern Recognition , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Receptors, Pattern Recognition/metabolism , Animals , Immunomodulation
8.
AMB Express ; 14(1): 62, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811509

ABSTRACT

Targeted bactericidal nanosystems hold significant promise to improve the efficacy of existing antimicrobials for treatment of severe bacterial infections by minimizing the side effects and lowering the risk of antibiotic resistance development. In this work, Silver Oxytetracycline Nano-structure (Ag-OTC-Ns) was developed for selective and effective eradication of Klebsiella pneumoniae pulmonary infection. Ag-OTC-Ns were prepared by simple homogenization-ultrasonication method and were characterized by DLS, Zeta potential, TEM and FT-IR. The antimicrobial activity of Ag-OTC-Ns was evaluated in vitro using broth micro-dilution technique and time-kill methods. Our study showed that MICs of AgNO3, OTC, AgNPs and Ag-OTC-Ns were 100, 100, 50 and 6.25 µg/ml, respectively. Ag-OTC-Ns demonstrated higher bactericidal efficacy against the targeted Klebsiella pneumoniae at 12.5 µg/ml compared to the free Oxytetracycline, AgNO3 and AgNPs. In vivo results confirmed that, Ag-OTC-Ns could significantly eradicate K. pneumoniae from mice lung in compare with free Oxytetracycline, AgNO3 and AgNPs. In addition, Ag-OTC-Ns could effectually diminish the inflammatory biomarkers levels of Interferon Gamma and IL-12, and as a result it could effectively lower lung damage in K. pneumoniae infected mice. Ag-OTC-Ns has no significant toxicity on tested mice along the experimental period, there was no sign of behavioral abnormality in the surviving mice indicating that the Ag-OTC-Ns is safe at the used concentration. Furthermore, capability of 5 kGy Gamma ray to sterilize Ag-OTC-Ns solution without affecting it stability was proven.

9.
Cell Biochem Biophys ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805114

ABSTRACT

While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.

10.
Cell Biochem Biophys ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806965

ABSTRACT

The advancement of novel technologies, coupled with bioinformatics, has led to the discovery of additional genes, such as long noncoding RNAs (lncRNAs), that are associated with drug resistance. LncRNAs are composed of over 200 nucleotides and do not possess any protein coding function. These lncRNAs exhibit lower conservation across species, are typically expressed at low levels, and often display high specificity towards specific tissues and developmental stages. The LncRNA MALAT1 plays crucial regulatory roles in various aspects of genome function, encompassing gene transcription, splicing, and epigenetics. Additionally, it is involved in biological processes related to the cell cycle, cell differentiation, development, and pluripotency. Recently, MALAT1 has emerged as a novel mechanism contributing to drug resistance or sensitivity, attracting significant attention in the field of cancer research. This review aims to explore the mechanisms through which MALAT1 confers resistance to chemotherapy and radiotherapy in cancer cells.

11.
Cell Biochem Biophys ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750383

ABSTRACT

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.

12.
Article in English | MEDLINE | ID: mdl-38592438

ABSTRACT

The present work investigates the potential role of metformin nanoparticles (MTF-NPs) as a radio-protector against cardiac fibrosis and inflammation induced by gamma radiation via CXCL1/TGF-ß pathway. Lethal dose fifty of nano-metformin was determined in mice, then 21 rats (male albino) were equally divided into three groups: normal control (G1), irradiated control (G2), and MTF-NPs + IRR (G3). The possible protective effect of MTF-NPs is illustrated via decreasing cardiac contents of troponin, C-X-C motif Ligand 1 (CXCL1), tumor growth factor ß (TGF-ß), protein kinase B (AKT), and nuclear factor-κB (NF-κB). Also, the positive effect of MTF-NPs on insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) in heart tissues using immunohistochemical technique is illustrated in the present study. Histopathological examination emphasizes the biochemical findings. The current investigation suggests that MTF-NPs might be considered as a potent novel treatment for the management of cardiac fibrosis and inflammation in patients who receive radiotherapy or workers who may be exposed to gamma radiation.

13.
Appl Radiat Isot ; 206: 111202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309118

ABSTRACT

In the present study, a graphical user interface (GUI) toolkit has been developed to analyze the thermoluminescence (TL) glow-curve and evaluate the trapping parameters using TL expression based on the one-trap one-recombination model. The basic idea of the deconvolution analysis in the developed toolkit is based on performing a sequence of successful fits, where the information provided by each fit is used by the next fit until the deconvolution of the entire glow curve approaches an optimum solution. The starting values and ranges of the fitting parameters can be controlled and adjusted to improve the deconvolution analysis of complex structure glow curves. The designed toolkit is also supported by the background-subtraction option to improve the analysis at low irradiation dose levels. The expanded uncertainty at the 95 % confidence level of the fitted trapping parameters is also provided. All the evaluations performed using the designed toolkit are allowed to be extracted into an Excel spreadsheet. The TL-SDA toolkit can be freely downloaded from: TLSDA_v1 - File Exchange - MATLAB Central (https://www.mathworks.com/matlabcentral/fileexchange/154136-tlsda_v1-1).

14.
Int J Biol Macromol ; 262(Pt 2): 130010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336320

ABSTRACT

In this work, gamma irradiation was used to create bimetallic silver­copper oxide nanoparticles (Ag-CuO NPs) in an ecologically acceptable way using gum Arabic (GA) polymer as a capping and reducing agent. Bimetallic Ag-CuO NPs were investigated through UV-Vis. spectroscopy, HR-TEM, SEM, DLS, and XRD examinations. The potency of antimicrobial and antibiofilm activities against a few bacterial isolates and Candida sp. had been investigated. Clinical investigations of 30 cows and 20 buffaloes from different sites in Egypt's Sharkia governorate found ulcerative lesions on the mouth and interdigital region. The cytotoxic assay of the generated NPs on BHK-21 was examined. The bimetallic Ag-CuO NPs had an average diameter of 25.58 nm, and the HR-TEM results showed that they were spherical. According to our results, Ag-CuO NPs exhibited the highest antibacterial efficacy against S. aureus (26.5 mm ZOI), K. pneumoniae (26.0 mm ZOI), and C. albicans (28.5 mm ZOI). The growth of biofilms was also successfully inhibited through the application of Ag-CuO NPs by 88.12 % against S. aureus, 87.08 % against C. albicans, and 74.0 % against B. subtilis. The ulcers on the mouth and foot of diseased animals healed in 4-5 days and 1 week, respectively, following topical application of bimetallic Ag-CuO NPs. The results examined the potential protective effects of a dosage of 3.57 µg/mL on cells before viral infection (cell control). According to our research, bimetallic Ag-CuO NPs limit the development of the virus that causes foot-and-mouth disease (FMD). The reduction of a specific FMD virus's cytopathic impact (CPE) on cell development represented the inhibitory effect when compared to identical circumstances without pretreatment with bimetallic Ag-CuO NPs. Their remarkable antibacterial properties at low concentration and continued-phase stability suggest that they may find widespread use in a variety of pharmacological and biological applications, especially in the wound-healing process.


Subject(s)
Anti-Infective Agents , Foot-and-Mouth Disease , Metal Nanoparticles , Nanoparticles , Female , Animals , Cattle , Silver/chemistry , Copper/chemistry , Gum Arabic/pharmacology , Staphylococcus aureus , Biomass , Anti-Bacterial Agents/chemistry , Bacteria , Anti-Infective Agents/pharmacology , Nanoparticles/chemistry , Oxides/pharmacology , Metal Nanoparticles/chemistry
15.
Crit Rev Anal Chem ; : 1-14, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165810

ABSTRACT

The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.

16.
Cancer Metastasis Rev ; 43(1): 5-27, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37552389

ABSTRACT

The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.


Subject(s)
MicroRNAs , Neoplasms , Humans , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Untranslated/genetics
17.
Pestic Biochem Physiol ; 197: 105701, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072556

ABSTRACT

BACKGROUND: Aluminum phosphide (AlP) is a well-known toxic compound used as an agricultural pesticide to prevent insect damage to stored crops. However, even if just a small amount was consumed, it caused lasting harm to the human body and, in acute concentrations, death. The current study employed cerium oxide nanoparticles (CeO2 NPs) to reduce oxidative stress and various harmful outcomes of AlP poisoning. METHODS: Following finding effective concentrations of CeO2 NPs via MTT assay, Human Cardiac Myocyte (HCM) cells were pre-treated with CeO2 NPs for 24 h. After that, they were exposed to 2.36 µM AlP. The activity of oxidative stress and mitochondrial biomarkers, including mitochondrial swelling, mitochondrial membrane potential, and cytochrome c release, were evaluated in HCM cells. Finally, the population of apoptotic and necrotic cells was assessed via flow cytometry. RESULTS: After 24 h, data revealed that all tested concentrations of CeO2 NPs were safe, and 25 and 50 µM of that were selected as effective concentrations. Oxidative stress markers (malondialdehyde, protein carbonyl, superoxide dismutase, and catalase) showed that CeO2 NPs could successfully decrease AlP poisoning due to their antioxidant characteristics. Mitochondrial markers were also recovered by pre-treatment of HCM cells with CeO2 NPs. Furthermore, pre-treating with CeO2 NPs could compensate for the reduction of live cells with AlP and cause a diminishing in the population of early and late apoptotic cells. CONCLUSION: As a result, it is evident that CeO2 NPs, through the recovery of oxidative stress and mitochondrial damages caused by AlP, reduce apoptosis and have therapeutic potentials on HCM cells.


Subject(s)
Nanoparticles , Pesticides , Humans , Pesticides/toxicity , Oxidative Stress
18.
Anal Methods ; 15(39): 5146-5156, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37753580

ABSTRACT

The present study developed a DNA biosensor to determine pemigatinib for the first time. Three-dimensional carnation flower-like Eu3+:ß-MnO2 nanostructures (3D CF-L Eu3+:ß-MnO2 NSs) and a screen-printed electrode (SPE) modified with polyaniline (PA) were employed. The double-stranded DNA was also immobilized completely on the PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE. Then, electrochemical techniques were used for characterizing the modified electrode. After that, the interaction between pemigatinib and DNA was shown by a reduction in the oxidation current of guanine using differential pulse voltammetry (DPV). According to the analysis, the dynamic range of pemigatinib was between 0.001 and 180.0 µM, indicating the new electrode has a low limit of detection (LOD = 0.23 nM) for pemigatinib. Afterwards, pemigatinib in real samples was measured using the PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE loaded with ds-DNA. The proposed DNA biosensor showed good selectivity toward pemigatinib in the presence of other interference analytes, such as other ions, structurally related pharmaceuticals, and plasma proteins. In addition, the interaction site of pemigatinib with DNA was predicted by molecular docking, which showed the interaction of pemigatinib with the guanine bases of DNA through a groove binding mode. Finally, we employed the t-test to verify the capability of the ds-DNA/PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE for analyzing pemigatinib in real samples.

19.
World J Microbiol Biotechnol ; 39(12): 324, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773301

ABSTRACT

Helicobacter pylori (H. pylori) is the main cause of gastric diseases. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance, low efficacy, and low drug concentration in the stomach. This study developed a Nano-emulsion system with ability to carry Curcumin and Clarithromycin to protect them against stomach acidity and increase their efficacy against H. pylori. We used oil in water emulsion system to prepare a novel Curcumin Clarithromycin Nano-Emulsion (Cur-CLR-NE). The nano-emulsion was validated by dynamic light scattering (DLS) technique, zeta potential; transmission electron microscopy (mean particle size 48 nm), UV-visible scanning and Fourier transform infrared spectroscopy (FT-IR). The in vitro assay of Cur-CLR-NE against H. pylori was evaluated by minimum inhibitory concentration (12.5 to 6.26 µg/mL), minimum bactericidal concentration (MBC) and anti-biofilm that showed a higher inhibitory effect of Cur-CLR-NE in compere with, free curcumin and clarithromycin against H. pylori. The in vivo results indicated that Cur-CLR-NE showed higher H. pylori clearance effect than free clarithromycin or curcumin under the same administration frequency and the same dose regimen. Histological analysis clearly showed that curcumin is highly effective in repairing damaged tissue. In addition, a potent synergistic effect was obvious between clarithromycin and curcumin in nano-emulsion system. The inflammation, superficial damage, the symptoms of gastritis including erosion in the mouse gastric mucosa, necrosis of the gastric epithelium gastric glands and interstitial oedema of tunica muscularis were observed in the positive control infected mice and absent from treated mice with Cur-CLR-NE.


Subject(s)
Curcumin , Helicobacter Infections , Helicobacter pylori , Animals , Mice , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Helicobacter Infections/drug therapy , Curcumin/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
20.
Int Immunopharmacol ; 123: 110713, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37523968

ABSTRACT

microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.


Subject(s)
Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/metabolism , Genes, Tumor Suppressor , Oncogenes , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...