Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging Radiat Sci ; 53(3): 460-470, 2022 09.
Article in English | MEDLINE | ID: mdl-35907770

ABSTRACT

PURPOSE: To provide means for calculating the dose received by various tissues of the patient, calculate lung shield, and verify received dose using a phantom as a tool for quality assurance for a planned Total Body Irradiation (TBI) procedure in radiotherapy. METHOD: Using Microsoft Visual Basic, MATLAB, and Python, a program for Total Body Irradiation Calculation in Radiotherapy (TBICR) is constructed. It uses patient translation and beam zone method for total body irradiation calculations to compute the proper dose received by the patient and determine the lung shield thickness. There are three main user-friendly interfaces in the application. The first one allows the user to upload the TBI topography and estimate the distances needed for TBI calculations. The second one enables the user to count the number of beam zones needed for each point and estimate the effective area (Aeff) for each level. The third interface estimates the velocity required to deliver the relative dose depending on patient separation, Monitor Units (MU), couch speed and travel distance. It allows the user to compute the required lung shield thickness, read any patient's CT DICOM file and acquire dose in any distinct location using machine learning model to predict the dose. RESULTS: The TBICR software has been successfully validated by reproducing all of the manual calculations in an exact and timely manner. TBICR generated more accurate results and confirmed the absorbed dose to patient through measurements on Anderson phantom. CONCLUSIONS: A computer program for the calculation of total body irradiation (TBI) is described in full. The dose received at each point on the patient, the calculation of lung shield and the determination of the velocity and time required for the couch movement are all made possible using the software. The ease of use, precision, data storage and printing are some important features of the present software.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Whole-Body Irradiation , Humans , Phantoms, Imaging , Radiotherapy Dosage , Software
2.
J Radiol Prot ; 38(2): 666-677, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29565027

ABSTRACT

This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.


Subject(s)
Particle Accelerators , Radiation Protection/methods , Radiotherapy Dosage , Software , Radiation Protection/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...