Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 14(1): 2249790, 2023 12.
Article in English | MEDLINE | ID: mdl-37621095

ABSTRACT

Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.


Subject(s)
Yersinia pseudotuberculosis , Animals , Yersinia pseudotuberculosis/genetics , Type III Secretion Systems/genetics , Immunity, Innate , Macrophages , Yersinia
2.
Methods Mol Biol ; 2010: 211-229, 2019.
Article in English | MEDLINE | ID: mdl-31177441

ABSTRACT

Many Gram-negative pathogens produce a type III secretion system capable of intoxicating eukaryotic cells with immune-modulating effector proteins. Fundamental to this injection process is the prior secretion of two translocator proteins destined for injectisome translocon pore assembly within the host cell plasma membrane. It is through this pore that effectors are believed to travel to gain access to the host cell interior. Yersinia species especially pathogenic to humans and animals assemble this translocon pore utilizing two hydrophobic translocator proteins-YopB and YopD. Although a full molecular understanding of the biogenesis, function and regulation of this translocon pore and subsequent effector delivery into host cells remains elusive, some of what we know about these processes can be attributed to studies of bacterial infections of erythrocytes. Herein we describe the methodology of erythrocyte infections by Yersinia, and how analysis of the resultant contact-dependent hemolysis can serve as a relative measurement of YopB- and YopD-dependent translocon pore formation.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Erythrocytes/microbiology , Yersinia Infections/pathology , Yersinia/physiology , Animals , Bacterial Outer Membrane Proteins/analysis , Erythrocytes/pathology , Hemolysis , Humans , Sheep , Sheep Diseases/metabolism , Sheep Diseases/microbiology , Sheep Diseases/pathology , Type III Secretion Systems/analysis , Type III Secretion Systems/metabolism , Yersinia Infections/metabolism , Yersinia Infections/microbiology , Yersinia Infections/veterinary , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/metabolism , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/pathology , Yersinia pseudotuberculosis Infections/veterinary
3.
PLoS One ; 8(10): e77767, 2013.
Article in English | MEDLINE | ID: mdl-24098594

ABSTRACT

Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Carrier Proteins/genetics , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Mutant Chimeric Proteins/metabolism , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Base Sequence , Carrier Proteins/metabolism , Host-Pathogen Interactions , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutant Chimeric Proteins/genetics , Open Reading Frames , Protein Multimerization , Virulence , Yersinia pseudotuberculosis Infections/microbiology
4.
Cell Microbiol ; 15(7): 1088-110, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23279117

ABSTRACT

Type III secretion enables bacteria to intoxicate eukaryotic cells with anti-host effectors. A class of secreted cargo are the two hydrophobic translocators that form a translocon pore in the host cell plasma membrane through which the translocated effectors may gain cellular entry. In pathogenic Yersinia, YopB and YopD shape this translocon pore. Here, four in cis yopD mutations were constructed to disrupt a predicted α-helix motif at the C-terminus. Mutants YopD(I262P) and YopD(K267P) poorly localized Yop effectors into target eukaryotic cells and failed to resist uptake and killing by immune cells. These defects were due to deficiencies in host-membrane insertion of the YopD-YopB translocon. Mutants YopDA(263P) and YopD(A270P) had no measurable in vitro translocation defect, even though they formed smaller translocon pores in erythrocyte membranes. Despite this, all four mutants were attenuated in a mouse infection model. Hence, YopD variants have been generated that can spawn translocons capable of targeting effectors in vitro, yet were bereft of any lethal effect in vivo. Therefore, Yop translocators may possess other in vivo functions that extend beyond being a portal for effector delivery into host cells.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Secretion Systems , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/pathogenicity , Animals , Bacterial Outer Membrane Proteins/genetics , Cell Line , DNA Mutational Analysis , Disease Models, Animal , Macrophages/immunology , Macrophages/microbiology , Mice , Virulence , Yersinia Infections/microbiology , Yersinia Infections/pathology , Yersinia pseudotuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...