Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Netw Neurosci ; 8(1): 203-225, 2024.
Article in English | MEDLINE | ID: mdl-38562294

ABSTRACT

The emerging neuroscientific frontier of brain fingerprinting has recently established that human functional connectomes (FCs) exhibit fingerprint-like idiosyncratic features, which map onto heterogeneously distributed behavioral traits. Here, we harness brain-fingerprinting tools to extract FC features that predict subjective drug experience induced by the psychedelic psilocybin. Specifically, in neuroimaging data of healthy volunteers under the acute influence of psilocybin or a placebo, we show that, post psilocybin administration, FCs become more idiosyncratic owing to greater intersubject dissimilarity. Moreover, whereas in placebo subjects idiosyncratic features are primarily found in the frontoparietal network, in psilocybin subjects they concentrate in the default mode network (DMN). Crucially, isolating the latter revealed an FC pattern that predicts subjective psilocybin experience and is characterized by reduced within-DMN and DMN-limbic connectivity, as well as increased connectivity between the DMN and attentional systems. Overall, these results contribute to bridging the gap between psilocybin-mediated effects on brain and behavior, while demonstrating the value of a brain-fingerprinting approach to pharmacological neuroimaging.

2.
Chaos ; 32(1): 013115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35105139

ABSTRACT

The apparent dichotomy between information-processing and dynamical approaches to complexity science forces researchers to choose between two diverging sets of tools and explanations, creating conflict and often hindering scientific progress. Nonetheless, given the shared theoretical goals between both approaches, it is reasonable to conjecture the existence of underlying common signatures that capture interesting behavior in both dynamical and information-processing systems. Here, we argue that a pragmatic use of integrated information theory (IIT), originally conceived in theoretical neuroscience, can provide a potential unifying framework to study complexity in general multivariate systems. By leveraging metrics put forward by the integrated information decomposition framework, our results reveal that integrated information can effectively capture surprisingly heterogeneous signatures of complexity-including metastability and criticality in networks of coupled oscillators as well as distributed computation and emergent stable particles in cellular automata-without relying on idiosyncratic, ad hoc criteria. These results show how an agnostic use of IIT can provide important steps toward bridging the gap between informational and dynamical approaches to complex systems.


Subject(s)
Cognition , Electronic Data Processing , Information Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...