Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Disord ; 16(5): 838-48, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11746613

ABSTRACT

Striatal 6-[18F]fluoro-L-DOPA (FDOPA) kinetic rate constants were measured by positron emission tomography (PET) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. After scanning, stereological counts of dopaminergic neurons were done in substantia nigra, and dopamine (DA) and metabolite concentrations were determined in the caudate, putamen, and substantia nigra. Graded doses of MPTP produced animals with mild to moderate reductions (10-35%) in dopaminergic neurons, where the percent of cell loss was proportional to the amount of MPTP given. Striatal DA and metabolite concentrations were relatively unchanged in animals given 1.0 and 1.5 mg/kg of MPTP, but were significantly reduced after 2.0 mg/kg of MPTP. All animals injected with a single dose of MPTP showed no overt signs of parkinsonism. In contrast, DA and metabolite concentrations in the substantia nigra were significantly reduced for all MPTP-treated animals. Reduction of dopaminergic indices in the substantia nigra did not parallel reductions in the striatum, indicating differential sensitivity of the nigrostriatal pathway to the neurotoxic effects of MPTP. The percent change in FDOPA uptake (Ki) and decarboyxlation (k3) after MPTP showed significant positive correlations to striatal DA levels, but not to the number of dopaminergic neurons. This suggests that FDOPA is a good index of striatal DA levels.


Subject(s)
Corpus Striatum/pathology , Dihydroxyphenylalanine/analogs & derivatives , Dopamine/deficiency , Parkinsonian Disorders/metabolism , Substantia Nigra/pathology , Tomography, Emission-Computed , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Female , Fluorine Radioisotopes , Male , Neural Pathways , Neurotoxins , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/pathology , Saimiri , Substantia Nigra/metabolism
2.
J Cereb Blood Flow Metab ; 20(7): 1134-48, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10908046

ABSTRACT

The peripherally born metabolite of FDOPA, 3-O-Methyl-FDOPA (3OMFD), crosses the blood-brain barrier, thus complicating positron emission tomography-FDOPA (PET-FDOPA) data analysis. In previous reports the distribution volume (DV) of 3OMFD was constrained to unity. We have recently shown that the forward transport rate-constant of FDOPA (K(S1)) and the cerebellum-to-plasma ratio (C(b)/C(p)), a measure for the DV of 3OMFD, are functions of plasma large neutral amino acid (LNAA) concentration. Given large interstudy and intersubject differences in plasma LNAA levels, variations in the DV of 3OMFD are significant. In this report, the authors propose a constraint on the DV of 3OMFD that accounts for these variations. Dynamic PET-FDOPA scans were performed on 12 squirrel monkeys and 12 vervet monkeys. Two sets of constraints were employed on the compartmental model--M1 or M2. In M1, the striatal DV of 3OMFD was constrained to unity; in M2, the striatal DV of 3OMFD was constrained to an estimate derived from the cerebellum. Striatal and cerebellar time-activity curves were fitted using FDOPA and 3OMFD plasma input functions. The estimate of K(S1) and that of the compartmental FDOPA uptake-constant (K(i)), both obtained using M2, were adjusted to values corresponding to average LNAA levels. Finally, K(i) was compared with the graphical uptake-constant (PK(j)). With the use of constraint M2, intersubject variability of squirrel monkey k(S3) and K(i) was reduced by 45% and 53%, respectively; and for vervet monkeys, by 54% and 44%, respectively. Intersubject variability of K(1) and K(i) was further reduced after correction for variations in intersubject plasma LNAA levels (for squirrel monkeys, by 67% and 41%; for vervet monkeys, by 40% and 36%, respectively). K(i) correlation to PK(i) was enhanced to identity. Finally, average cerebellar k(C2) estimates were more than 2.5-fold higher than striatal k(S2) estimates (P < 0.0001). In modeling of PET-FDOPA data, it cannot be assumed that the DV of 3OMFD is unity. The cerebellar-derived constraint furnishes a reliable estimate for the DV of 3OMFD. Invoking the constraint and correcting for variations in plasma LNAA significantly reduced interstudy and intersubject variations in parameter estimates.


Subject(s)
Cerebellum/metabolism , Corpus Striatum/metabolism , Dihydroxyphenylalanine/analogs & derivatives , Models, Biological , Animals , Cercopithecus , Dihydroxyphenylalanine/pharmacokinetics , Kinetics , Saimiri , Tomography, Emission-Computed
3.
J Neurochem ; 74(3): 1147-57, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10693947

ABSTRACT

Aromatic L-amino acid decarboxylase (AAAD) activity was examined in vivo with positron emission tomography (PET) using 6-[18F]fluoro-L-DOPA (FDOPA) in squirrel monkeys lesioned with graded doses of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro biochemical determinations of AAAD activity in caudate, putamen, substantia nigra, and nucleus accumbens were performed in the same animals to establish a direct comparison of in vivo and in vitro measurements. In vivo and in vitro AAAD activities in caudate/ putamen were substantially reduced in animals treated with the highest dose of MPTP (2.0 mg/kg). The percent change in the striatal FDOPA uptake (K(i)) and decarboxylation rate constant (k3) values resulting from MPTP treatment showed highly significant correlations with in vitro-determined AAAD activities. However, decarboxylase rates within individual animals presented as approximately 10-fold difference between in vivo and in vitro values. Lower in vivo k3 measurements may be attributed to several possibilities, including transport restrictions limiting substrate availability to AAAD within the neuron. In addition, reductions in AAAD activity in the substantia nigra did not parallel reductions in AAAD activity within the striatum, supporting the notion of a nonlinear relationship between nigrostriatal cell degeneration and terminal losses. This work further explores the role of AAAD in Parkinson's disease, a more important factor than previously thought.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Corpus Striatum/enzymology , Dopamine Agents/pharmacology , Substantia Nigra/enzymology , Animals , Aromatic Amino Acid Decarboxylase Inhibitors , Corpus Striatum/drug effects , Dihydroxyphenylalanine/analogs & derivatives , Female , Male , Saimiri , Substantia Nigra/drug effects , Tomography, Emission-Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...