Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 47(8-9): 768-776, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34185213

ABSTRACT

In natural and agricultural ecosystems, plants are often simultaneously or sequentially exposed to combinations of stressors. Here we tested whether limited water availability (LWA) affects plant response to insect herbivory using two populations of Eruca sativa from desert and Mediterranean habitats that differ in their induced defenses. Considering that such differences evolved as responses to biotic and possibly abiotic stress factors, the two populations offered an opportunity to study ecological aspects in plant response to combined stresses. Analysis of chemical defense mechanisms showed that LWA significantly induced total glucosinolate concentrations in the Mediterranean plants, but their concentrations were reduced in the desert plants. However, LWA, with and without subsequent jasmonate elicitation, significantly induced the expression of proteinase inhibitor in the desert plants. Results of a no-choice feeding experiment showed that LWA significantly increased desert plant resistance to Spodoptera littoralis larvae, whereas it did not affect the relatively strong basal resistance of the Mediterranean plants. LWA and subsequent jasmonate elicitation increased resistance against the generalist insect in Mediterranean plants, possibly due to both increased proteinase inhibitor expression and glucosinolate accumulation. The effect of LWA on the expression of genes involved in phytohormone signaling, abscisic acid (ABA-1) and jasmonic acid (AOC1), and the jasmonate responsive PDF1.2, suggested the involvement of abscisic acid in the regulation of defense mechanisms in the two populations. Our results indicate that specific genotypic responses should be considered when estimating general patterns in plant response to herbivory under water deficiency conditions.


Subject(s)
Brassicaceae/metabolism , Ecosystem , Spodoptera/physiology , Water/chemistry , Abscisic Acid/metabolism , Animals , Brassicaceae/chemistry , Cyclopentanes/metabolism , Defensins/genetics , Defensins/metabolism , Desert Climate , Enzyme Inhibitors/metabolism , Gene Expression/drug effects , Glucosinolates/analysis , Glucosinolates/metabolism , Glucosinolates/pharmacology , Herbivory/drug effects , Larva/growth & development , Larva/physiology , Mediterranean Region , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Spodoptera/growth & development , Stress, Physiological , Water/metabolism
2.
J Sci Food Agric ; 100(11): 4083-4092, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-31141162

ABSTRACT

BACKGROUND: For over a century, genetic diversity of wheat worldwide was eroded by continual selection for high yields and industrial demands. Wheat landraces cultivated in Israel and Palestine demonstrate high genetic diversity and a potentially wide repertoire of adaptive alleles. While most Israeli-Palestinian wheat landraces were lost in the transition to 'Green Revolution' semi-dwarf varieties, some germplasm collections made at the beginning of the 20th century survived in gene banks and private collections worldwide. However, fragmentation and poor conservation place this unique genetic resource at a high risk of genetic erosion. Herein, we describe a long-term initiative to restore, conserve, and characterize a collection of Israeli and Palestinian wheat landraces (IPLR). RESULTS: We report on (i) the IPLR construction (n = 932), (ii) the historical and agronomic context to this collection, (iii) the characterization and assessment of the IPLR's genetic diversity, and (iv) a data comparison from two distinct subcollections within IPLR: a collection made by N. Vavilov in 1926 (IPLR-VIR) and a later one (1979-1981) made by Y. Mattatia (IPLR-M). Though conducted in the same eco-geographic space, these two collections were subjected to considerably different conservation pathways. IPLR-M, which underwent only one propagation cycle, demonstrated marked genetic and phenotypic variability (within and between accessions) in comparison with IPLR-VIR, which had been regularly regenerated over ∼90 years. CONCLUSION: We postulate that long-term ex situ conservation involving human and genotype × environment selection may significantly reduce accession heterogeneity and allelic diversity. Results are further discussed in a broader context of pre-breeding and conservation. © 2019 Society of Chemical Industry.


Subject(s)
Genetic Variation , Triticum/classification , Triticum/genetics , Agriculture/history , Alleles , Genotype , History, 20th Century , History, 21st Century , Israel , Plant Breeding , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...