Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Neurosci ; 74(3): 62, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958788

ABSTRACT

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aß) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Ferroptosis , Lipid Metabolism , Humans , Alzheimer Disease/metabolism , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Animals , Iron/metabolism
2.
Antioxidants (Basel) ; 13(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397840

ABSTRACT

Ferroptosis is a special kind of programmed cell death that has been implicated in the pathogenesis of a large number of human diseases. It involves dysregulated intracellular iron metabolism and uncontrolled lipid peroxidation, which together initiate intracellular ferroptotic signalling pathways leading to cellular suicide. Pharmacological interference with ferroptotic signal transduction may prevent cell death, and thus patients suffering from ferroptosis-related diseases may benefit from such treatment. Butylated hydroxytoluene (BHT) is an effective anti-oxidant that is frequently used in oil chemistry and in cosmetics to prevent free-radical-mediated lipid peroxidation. Since it functions as a radical scavenger, it has previously been reported to interfere with ferroptotic signalling. Here, we show that BHT prevents RSL3- and ML162-induced ferroptotic cell death in cultured human neuroblastoma cells (SH-SY5Y) in a dose-dependent manner. It prevents the RSL3-induced oxidation of membrane lipids and normalises the RSL3-induced inhibition of the intracellular catalytic activity of glutathione peroxidase 4. The systemic application of BHT in a rat Alzheimer's disease model prevented the upregulation of the expression of ferroptosis-related genes. Taken together, these data indicate that BHT interferes with ferroptotic signalling in cultured neuroblastoma cells and may prevent ferroptotic cell death in an animal Alzheimer's disease model.

3.
Onco Targets Ther ; 13: 6603-6615, 2020.
Article in English | MEDLINE | ID: mdl-32753896

ABSTRACT

MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded, tiny RNAs with 21-23 nucleotides that regulate several biological functions through binding to target mRNAs and modulating gene expression at post-transcriptional levels. Recent studies have described crucial roles for miRNAs in pathophysiology of numerous human cancers. They can act as an oncogene and promote cancer or as a tumor suppressor and alleviate the disease. Recently discovered microRNA-154 (miR-154) has been proposed to be involved in multiple physiological and pathological processes including cancer. With this aspect, aberrant expression of miR-154 has been demonstrated in variety of human malignancies, suggesting an important role for miR-154 in tumorigenesis. To be specific, it is considered as a tumor suppressor miRNA and exerts its beneficial effects by targeting several genes. This review systematically summarizes the recent advances done on the role of miR-154 in different cancers and discusses its potential prognostic, diagnostic and therapeutic values.

4.
Biol Chem ; 401(10): 1101-1121, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32427116

ABSTRACT

Metabolic disorders, including obesity, diabetes, and hyperlipidemia, as well as cardiovascular diseases (CVD), particularly atherosclerosis, are still leading causes of death worldwide. Plasma levels of low-density lipoprotein (LDL) are currently being considered as a critical risk factor for the diseases mentioned above, especially atherosclerosis. Because of the heterogeneous nature of LDL, many studies have already been conducted on its subclasses, especially small dense LDL (sdLDL). According to available evidence, sdLDL levels can be considered as an ideal alternative to LDL levels for monitoring CVD and early diagnosis of atherosclerosis. Recently, several researchers have focused on factors that are able to decrease sdLDL levels and improve health quality. Therefore, the purpose of this study is to describe the production process of sdLDL particles and review the effects of pharmaceutical and dietary agents as well as lifestyle on sdLDL plasma levels. In brief, their mechanisms of action are discussed. Apparently, cholesterol and LDL-lowering compounds are also effective in the reduction of sdLDL levels. In addition, improving lipid profile, especially the reduction of triglyceride levels, appropriate regimen, and lifestyle can decrease sdLDL levels. Therefore, all the aforementioned parameters should be taken into consideration simultaneously in sdLDL levels reducing strategies.


Subject(s)
Atherosclerosis/drug therapy , Dietary Supplements , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Lipoproteins, LDL/antagonists & inhibitors , Plants, Medicinal , Atherosclerosis/blood , Atherosclerosis/metabolism , Humans , Lipoproteins, LDL/blood , Lipoproteins, LDL/metabolism
5.
Iran J Pediatr ; 23(5): 597-600, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24800024

ABSTRACT

BACKGROUND: Tailgut cyst (TGC) is a rare congenital lesion that originates from remnants of the embryonic post-anal gut. It presents as a multilocular presacral mass mainly in young women. Microscopically, the cyst lining is composed of different types of epithelium such as stratified squamous, transitional, or glandular. CASE PRESENTATION: We present a term female newborn referred to our hospital for evaluation and management of imperforate anus. During dissection of the presacral space to release the rectum, a multicystic mass adherent to the distal part of rectum was detected and completely excised. Histopathology confirmed the TGC diagnosis. CONCLUSION: TGC is a very rare lesion, but it should be considered in differential diagnosis of any presacral mass, even in infancy. Complete excision is the preferred treatment and can be done more easily neonatally or in infancy.

SELECTION OF CITATIONS
SEARCH DETAIL
...