Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(29): 16270-16281, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31304491

ABSTRACT

In this work, surface reconstructions on the (100) surface of CaF2 are comprehensively investigated. The configurations were explored by employing the Minima Hopping Method (MHM) coupled to a machine-learning interatomic potential, that is based on a charge equilibration scheme steered by a neural network (CENT). The combination of these powerful methods revealed about 80 different morphologies for the (100) surface with very similar surface formation energies differing by not more than 0.3 J m-2. To take into account the effect of temperature on the dynamics of this surface as well as to study the solid-liquid transformation, molecular dynamics simulations were carried out in the canonical (NVT) ensemble. By analyzing the atomic mean-square displacements (MSD) of the surface layer in the temperature range of 300-1200 K, it was found that in the surface region the F sublattice is less stable and more diffusive than the Ca sublattice. Based on these results we demonstrate that not only a bulk system, but also a surface can exhibit a sublattice premelting that leads to superionicity. Both the surface sublattice premelting and surface premelting occur at temperatures considerably lower than the bulk values. The complex behaviour of the (100) surface is contrasted with the simpler behavior of other low index crystallographic surfaces.

2.
J Chem Phys ; 144(3): 034203, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26801027

ABSTRACT

Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. The new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.

SELECTION OF CITATIONS
SEARCH DETAIL
...