Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(26): 28546-28555, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973860

ABSTRACT

Organofluorine compounds have been widely used as pharmaceuticals, agricultural pesticides, and water-resistant coatings for decades; however, these compounds are recognized as environmental pollutants. The capability of microorganisms and enzymes to defluorinate organofluorine compounds is both rare and highly desirable to facilitate environmental remediation efforts. Recently, a strain of Delftia acidovorans (D4B) was identified with potential biodegradation activity toward perfluoroalkyl substances (PFAS) and other organofluorine compounds. Genomic analysis found haloacid and fluoroacetate dehalogenases as enzymes associated with Delftia acidovorans. Here, defluorination activity of these enzymes toward different fluorinated substrates was investigated after their recombinant expression and purification from E. coli. Using an electrochemical fluoride probe, 19F NMR, and mass spectrometry to monitor defluorination, we identified two dehalogenases, DeHa2 (a haloacid dehalogenase) and DeHa4 (a fluoroacetate dehalogenase), with activity toward mono- and difluoroacetate. Of the two dehalogenases, DeHa4 demonstrated a low pH optimum compared to DeHa2, which lost catalytic activity under acidic conditions. DeHa2 and DeHa4 are relatively small proteins, operate under aerobic conditions, and remain active for days in the presence of substrates. Significantly, while there have been many reports on dehalogenation of monofluoroacetate by dehalogenases, this study adds to the relatively small list of enzymes reported to carry out enzymatic defluorination of the more recalcitrant disubstituted carbon in an organofluorine compound. Thus, DeHa2 and DeHa4 represent organofluorine dehalogenases that may be used in the future to design and engineer robust defluorination agents for environmental remediation efforts.

2.
Sci Rep ; 13(1): 4082, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906658

ABSTRACT

Despite the success of AlphaFold2 (AF2), it is unclear how AF2 models accommodate for ligand binding. Here, we start with a protein sequence from Acidimicrobiaceae TMED77 (T7RdhA) with potential for catalyzing the degradation of per- and polyfluoroalkyl substances (PFASs). AF2 models and experiments identified T7RdhA as a corrinoid iron-sulfur protein (CoFeSP) which uses a norpseudo-cobalamin (BVQ) cofactor and two Fe4S4 iron-sulfur clusters for catalysis. Docking and molecular dynamics simulations suggest that T7RdhA uses perfluorooctanoic acetate (PFOA) as a substrate, supporting the reported defluorination activity of its homolog, A6RdhA. We showed that AF2 provides processual (dynamic) predictions for the binding pockets of ligands (cofactors and/or substrates). Because the pLDDT scores provided by AF2 reflect the protein native states in complex with ligands as the evolutionary constraints, the Evoformer network of AF2 predicts protein structures and residue flexibility in complex with the ligands, i.e., in their native states. Therefore, an apo-protein predicted by AF2 is actually a holo-protein awaiting ligands.


Subject(s)
Fluorocarbons , Iron-Sulfur Proteins , Ligands , Furylfuramide , Iron-Sulfur Proteins/metabolism , Vitamin B 12/metabolism
3.
J Phys Chem B ; 126(35): 6614-6623, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36006408

ABSTRACT

Sclerotization of the Nereis virens jaw is mediated by metal binding to the histidine-rich jaw protein, Nvjp-1. Previous studies showed that the mechanical properties of Nvjp-1 hydrogels could be modulated with zinc binding as well as the associated anion. Here, we show that the mechanical properties of Nvjp-1 hydrogels can be modulated by pH and that zinc binding to Nvjp-1 is stable at both acidic and alkaline pH conditions. To probe the mechanism of Zn2+ binding to Nvjp-1 at different pH conditions, we utilized all atom molecular dynamics simulations employing a polarizable force field. At low pH conditions, polar residues predominantly interacted with Zn2+, with at most two residues interacting with a given zinc ion. Surprisingly, little to no Zn2+ binding was observed with the abundant Nvjp-1 acidic residues, which form salt-bridges with the protonated histidines to effectively block their binding to Zn2+ ions. As the pH was shifted to alkaline conditions, Zn2+ binding residues reconfigured to form additional coordination bonds with histidine, resulting in a reduction in the radius of gyration that correlated with hydrogel sclerotization. Furthermore, acetate ions were shown to facilitate the capture of zinc ions through association with protonated histidines at low pH, freeing acidic residues to interact with Zn2+ ions and increasing the number of Zn2+ ions that diffuse into the Nvjp-1 interior. Thus, these studies provide valuable molecular insights into how amino acid residues in Nvjp-1 manage metal salt binding and coordination in hydrogels as a function of the pH and ionic environments.


Subject(s)
Intrinsically Disordered Proteins , Binding Sites , Chelating Agents , Histidine/chemistry , Hydrogels , Hydrogen-Ion Concentration , Intrinsically Disordered Proteins/chemistry , Ions , Molecular Dynamics Simulation , Protein Binding , Zinc/chemistry
4.
Sci Rep ; 12(1): 10696, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739160

ABSTRACT

AlphaFold 2 (AF2) has placed Molecular Biology in a new era where we can visualize, analyze and interpret the structures and functions of all proteins solely from their primary sequences. We performed AF2 structure predictions for various protein systems, including globular proteins, a multi-domain protein, an intrinsically disordered protein (IDP), a randomized protein, two larger proteins (> 1000 AA), a heterodimer and a homodimer protein complex. Our results show that along with the three dimensional (3D) structures, AF2 also decodes protein sequences into residue flexibilities via both the predicted local distance difference test (pLDDT) scores of the models, and the predicted aligned error (PAE) maps. We show that PAE maps from AF2 are correlated with the distance variation (DV) matrices from molecular dynamics (MD) simulations, which reveals that the PAE maps can predict the dynamical nature of protein residues. Here, we introduce the AF2-scores, which are simply derived from pLDDT scores and are in the range of [0, 1]. We found that for most protein models, including large proteins and protein complexes, the AF2-scores are highly correlated with the root mean square fluctuations (RMSF) calculated from MD simulations. However, for an IDP and a randomized protein, the AF2-scores do not correlate with the RMSF from MD, especially for the IDP. Our results indicate that the protein structures predicted by AF2 also convey information of the residue flexibility, i.e., protein dynamics.


Subject(s)
Intrinsically Disordered Proteins , Amino Acid Sequence , Furylfuramide , Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation
5.
Microbiol Resour Announc ; 10(44): e0063521, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34734765

ABSTRACT

Delftia acidovorans strain D4B is an aerobic bacterium within the Betaproteobacteria lineage that was isolated from soil. The genome size is 6.26 Mbp, with a G+C content of 67%. The genome encodes enzymes potentially involved in the degradation of fluorinated compounds.

7.
Front Chem ; 7: 950, 2019.
Article in English | MEDLINE | ID: mdl-32039158

ABSTRACT

Minicollagens from cnidarian nematocysts are attractive potential building blocks for the creation of strong, lightweight and tough polymeric materials with the potential for dynamic and reconfigurable crosslinking to modulate functionality. In this study, the Hydra magnipapillata minicollagen-1 isoform was recombinantly expressed in bacteria, and a high throughput purification protocol was developed to generate milligram levels of pure protein without column chromatography. The resulting minicollagen-1 preparation demonstrated spectral properties similar to those observed with collagen and polyproline sequences as well as the ability to self-assemble into oriented fibers and bundles. Photo-crosslinking with Ru(II) ( bpy ) 3 2 + was used to create robust hydrogels that were analyzed by mechanical testing. Interestingly, the minicollagen-1 hydrogels could be dissolved with reducing agents, indicating that ruthenium-mediated photo-crosslinking was able to induce disulfide metathesis to create the hydrogels. Together, this work is an important first step in creating minicollagen-based materials whose properties can be manipulated through static and reconfigurable post-translational modifications.

8.
Trends Genet ; 26(5): 221-30, 2010 May.
Article in English | MEDLINE | ID: mdl-20395010

ABSTRACT

RNA editing by adenosine deamination fuels the generation of RNA and protein diversity in eukaryotes, particularly in higher organisms. This includes the recoding of translated exons, widespread editing of retrotransposon-derived repeat elements and sequence modification of microRNA (miRNA) transcripts. Such changes can bring about specific amino acid substitutions, alternative splicing and changes in gene expression levels. Although the overall prevalence of adenosine-to-inosine (A-to-I) editing and its specific functional impact on many of the affected genes is not yet known, the importance of balancing RNA modification levels across time and space is becoming increasingly evident. In particular, transcriptome instabilities in the form of too much or too little RNA editing activity, or misguided editing, manifest in several human disease phenotypes and can disrupt that balance.


Subject(s)
Proteins/genetics , RNA Editing , Adenosine/metabolism , Animals , Deamination , Humans , Neoplasms/genetics , Nervous System Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...