Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 56(9): 4224-4232, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31477993

ABSTRACT

A bat inspired algorithm with the aid of artificial neural networks (ANN-BA) has been used for the first time in chemistry and food sciences to optimize solvent-terminated dispersive liquid-liquid microextraction (ST-DLLME) as a green, fast and low cost technique for determination of Cu2+ ions in water and food samples using p-sulfonatocalix (4) arene as a complexing reagent. For this purpose, the influence of four important factors four factors which was influenced on the extraction efficiency such as salt addition, solution pH and disperser and extraction solvent volumes were investigated. Central composite design (CCD) as a comparative technique was employed for optimization of ST-DLLME efficiency. The ANN-BA optimization technique was regarded as a superior model due to its higher value of extraction efficiency (about 7.21%) compared to CCD method. Under ANN-BA optimal conditions, the limit of quantitation (S/N = 10), limit of detection (S/N = 3) and linear range were 0.35, 0.12 and 0.35-1000 µg L-1, respectively. In these circumstances, the percentage recoveries for drinking tea, apple juice, milk, bottled drinking water, river and well water spiked with 0.05, 0.1 and 0.2 mg L-1 of Cu2+ ions were in the acceptable range (91.4-107.1%). In comparison to other methods, the developed ST-DLLME method showed the lowest solvent and sample consumption, shortest value of extraction time, most suitable determination and detection limits and linear range with simple and low cost apparatus. Additionally, the use of bat inspired algorithm as a powerful metaheuristic algorithm with the aid of artificial networks is another advantage of the present work.

2.
Environ Monit Assess ; 191(5): 287, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-31001697

ABSTRACT

Solvent-terminated dispersive liquid-liquid microextraction (ST-DLLME) as a simple, fast, and low-cost technique was developed for simultaneous extraction of Cd2+ and Cu2+ ions in aqueous solutions. Multiobjective evolutionary algorithm based on decomposition with the aid of artificial neural networks (ANN-MOEA/D) was used for the first time in chemistry, environment, and food sciences to optimize several independent variables affecting the extraction efficiency, including disperser volume and extraction solvent volume, pH, and salt addition. To perform the ST-DLLME operations, xylene, methanol, and dithizone were utilized as an extraction solvent, disperser solvent, and chelating agent, respectively. Non-dominated sorting genetic algorithm versions II and III (NSGA II and NSGA III) as multiobjective metaheuristic algorithms and in addition central composite design (CCD) were studied as comparable optimization methods. A comparison of results from these techniques revealed that ANN-MOEA/D model was the best optimization technique owing to its highest efficiency (97.6% for Cd2+ and 98.3% for Cu2+). Under optimal conditions obtained by ANN-MOEAD, the detection limit (S/N = 3), the quantitation limit(S/N = 10), and the linear range for Cu2+ were 0.05, 0.15, and 0.15-1000 µg L-1, respectively, and for Cd2+ were 0.07, 0.21, and 0.21-750 µg L-1, respectively. The real sample recoveries at a spiking level of 0.05, 0.1, and 0.3 mg L-1 of Cu2+ and Cd2+ ions under the optimal conditions obtained by ANN-MOEA/D ranged from 94.8 to 105%.


Subject(s)
Cadmium/chemistry , Copper/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Algorithms , Chelating Agents/chemistry , Environmental Monitoring/methods , Ions , Limit of Detection , Liquid Phase Microextraction/methods , Methanol/chemistry , Neural Networks, Computer , Solvents/chemistry , Water/chemistry
3.
Bull Environ Contam Toxicol ; 100(3): 402-408, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29279992

ABSTRACT

A multivariate method based on solvent terminated dispersive liquid-liquid microextraction was developed for the determination of Cu2+ ions in aqueous samples. In the proposed approach, di-2-ethylhexylphosphoric acid, xylene and acetone were used as chelating agent, dispersive and extraction solvents, respectively. The effects of various factors on the extraction efficiency such as extraction and dispersive solvent volumes, salt addition and pH were studied using central composite design (CCD) and artificial neural networks coupled bees algorithm (ANN-BA). Upon comparison of these techniques, ANN-BA model was considered to be better optimization method due to its higher percentage relative recovery (about 5%) as compared to the CCD approach. The linear range and the limits of detection (S/N = 3) and quantitation (S/N = 10) were 0.22-140, 0.08 and 0.22 µg L-1, respectively. Under the optimal conditions, the recoveries for real samples spiked with 0.1 and 0.3 mg L-1 were in the range of 85-98%.


Subject(s)
Copper/analysis , Food Contamination/analysis , Liquid Phase Microextraction/methods , Neural Networks, Computer , Solvents/chemistry , Water Pollutants, Chemical/analysis , Algorithms , Chelating Agents/chemistry , Ions , Limit of Detection , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...