Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; 20(7): e202300389, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37366243

ABSTRACT

In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile (1) and its metal phthalocyanines (2 and 3) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds (1-3), their nanoconjugates (4-6), and silver nanoparticles (7) were examined for the first time in this study. The antioxidant activities of biological candidates (1-7) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates (6). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates (1-7) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates (5 and 6) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates (1-6) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoconjugates/chemistry , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
2.
Dalton Trans ; 52(21): 7009-7020, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37092282

ABSTRACT

This study reports the synthesis and characterization of two new mono- and di-substituted phthalonitriles namely 4-((9H-carbazol-3-yl)oxy)-5-chlorophthalonitrile and 4,5-bis((9H-carbazol-3-yl)oxy)phthalonitrile, respectively. Cyclotetramerization of the new phthalonitriles in the presence of zinc(II) acetate resulted in related zinc(II) phthalocyanines. To study the effect of the position and number of substituents on the biological properties of the phthalocyanines, peripherally or non-peripherally tetra-substituted zinc(II) phthalocyanines bearing (9H-carbazol-3-yl)oxy groups, as well as axially di-substituted silicon phthalocyanines containing the same groups, were prepared. Since gold nanoparticles are well-known as efficient drug delivery agents, the surface of these metal nanoparticles was functionalized with all the compounds. This modification also improved the solubility of the phthalocyanines in aqueous media. In this study, the antioxidant, DNA cleavage, and toxic/phototoxic activities of the resultant nanoconjugates were examined. With a combination of metal ion and substituent (nature, number, and position) effects, the silicon(IV) phthalocyanine exhibited the highest biological properties.

3.
Chem Biodivers ; 20(4): e202201167, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36912724

ABSTRACT

In this study, three new axially disubstituted silicon phthalocyanines (SiPc1-3) and their quaternized phthalocyanine derivatives (QSiPc1-3) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds (QSiPc1-3) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1-3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Organosilicon Compounds , Staphylococcus aureus , Humans , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor/drug effects , DNA/chemistry , Escherichia coli/drug effects , Ligands , Staphylococcus aureus/drug effects , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology
4.
Turk J Chem ; 47(5): 1085-1102, 2023.
Article in English | MEDLINE | ID: mdl-38173750

ABSTRACT

This study presents the synthesis of some metal {M = Zn(II), Lu(III), Si(IV)} phthalocyanines bearing chlorine and 2-(4-methylthiazol-5-yl) ethoxy groups at peripheral or axial positions. The newly synthesized metal phthalocyanines were characterized by applying FT-IR, 1H NMR, mass, and UV-Vis spectroscopic approaches. Additionally, the surface of gold nanoparticles was modified with zinc(II) and silicon(IV) phthalocyanines. The resultant nanoconjugates were characterized using TEM images. Moreover, the effect of metal ions and position of substituent, and gold nanoparticles on the photochemical and sonophotochemical properties of the studied phthalocyanines was investigated. The highest singlet oxygen quantum yield was obtained for the lutetium phthalocyanine by applying photochemical and sonophotochemical methods. However, the linkage of the zinc(II) and silicon(IV) phthalocyanines to the surface of gold nanoparticles improved significantly their singlet oxygen generation capacities.

5.
J Inorg Biochem ; 234: 111888, 2022 09.
Article in English | MEDLINE | ID: mdl-35691264

ABSTRACT

In this study, a new tetra-substituted phthalonitrile (diethyl 2-(2-chloro-4,5-dicyano-3,6-bis(hexyloxy)phenyl)malonate) bearing three different substituents was synthesized and characterized. Due to the basic medium, transesterification occurred during the synthesis of the target phthalocyanines [M = Zn (II), Cu (II), Co (II), In (III), Lu (III)] in n-pentanol and the ethyl groups were replaced with pentyl groups. The biological features of the resultant compounds were studied for the first time in this study. All the compounds exhibited high antioxidant, antimicrobial, and DNA cleavage activities. The highest antioxidant activity was obtained 90.39% for lutetium phthalocyanine at 100 mg/L. The most effective MIC value was obtained 8 mg/L against Candida parapisilosis. The most effective microbial cell viability inhibition was obtained 100% for cobalt and lutetium phthalocyanines. They exhibited excellent biofilm inhibiton activities. Higher biofilm inhibition was achieved using light irradiation. The compounds exhibited higher biofilm inhibition activities with photodynamic against Staphylococcus aureus compared with Pseudo aureginosa.


Subject(s)
Indoles , Lutetium , Indoles/pharmacology , Isoindoles , Metals
6.
Dalton Trans ; 51(19): 7539-7550, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35506569

ABSTRACT

This study reports the synthesis of three novel axially disubstituted silicon phthalocyanines (1-3-Si) and their quaternized phthalocyanines (1-3-QSi). The resulting compounds were characterized by applying spectroscopic techniques including 1H NMR, FT-IR, UV-vis, and mass spectroscopy. The biological properties of compounds 1-3-QSi, including DNA cleavage activities, DNA binding modes, and topoisomerase enzyme inhibition activities, were investigated using agarose gel electrophoresis. pBR322 plasmid DNA, CT-DNA, and AL-DNA (isolated from apricot leaf) were used for DNA studies. All the quaternized compounds exhibited acceptable DNA cleavage activities. Human topoisomerase I and E. coli topoisomerase enzymes were used for the topoisomerase I inhibition studies. All the quaternized complexes inhibited topoisomerase I activity. Moreover, these compounds were screened for cytotoxic and apoptotic effects against a human colon cancer cell line (DLD-1) by performing MTT and Annexin V assays. They exhibited toxicity and apoptotic effect on the DLD-1 cell line. The findings reveal that the compounds can be utilized for cancer therapy after further investigations.


Subject(s)
Antineoplastic Agents , DNA Topoisomerases, Type I , Isoindoles/chemistry , Silicon Compounds/chemistry , Antineoplastic Agents/chemistry , DNA/chemistry , DNA Topoisomerases, Type I/metabolism , Escherichia coli , Humans , Solubility , Spectroscopy, Fourier Transform Infrared
7.
Dalton Trans ; 51(11): 4466-4476, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35229854

ABSTRACT

The emergence of nanoscience and its effect on the development of diverse scientific fields, particularly materials chemistry, are well known today. In this study, a new di-substituted phthalonitrile derivative, namely 4,5-bis((4-(dimethylamino)phenyl)ethynyl)phthalonitrile (1), and its octa-substituted metal phthalocyanines {M = Co (2), Zn (3)} were prepared. All the newly synthesized compounds were characterized using a number of spectroscopic approaches, including FT-IR, mass, NMR, and UV-vis spectroscopy. The resultant compounds modified the surface of the gold nanoparticles (NG-1-3). Characterization of the newly synthesized conjugates was carried out by transmission electron microscopy. The antioxidant activity of compounds 1-3, NG-1-3, and NG was evaluated using the DPPH scavenging process and the highest radical scavenging activity was obtained with compounds 1, NG-1, 2, and NG-2 (100%). The antimicrobial activity of compounds 1-3, NG-1-3, and NG was studied using a microdilution assay and the most effective antimicrobial activity was obtained for NG-3 against all the tested microorganisms. The newly synthesized compounds demonstrated high DNA cleavage activity. Compounds 1-3, NG-1-3, and NG significantly inhibited the microbial cell viability of E. coli and exhibited perfect antimicrobial photodynamic therapeutic activity with 100% inhibition after 20 min LED irradiation. Besides, the biofilm inhibition activity of compounds 1-3, NG-1-3, and NG on the growth of S. aureus and P. aeruginosa were examined and compounds 1-3 and NG-1-3, especially NG-1-3, displayed high biofilm inhibition activities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Coordination Complexes/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Isoindoles/chemistry , Isoindoles/pharmacology , Metal Nanoparticles , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Microbial Sensitivity Tests , Picrates/antagonists & inhibitors
8.
Dalton Trans ; 51(2): 478-490, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34755751

ABSTRACT

This study presents the preparation of a novel tetra-substituted phthalonitrile (1), namely, 3,6-bis(hexyloxy)-4,5-bis(4-(trifluoromethoxy)phenoxy)phthalonitrile (1) and its metal-free (2)/metal {M = Zn (3), Cu (4), Co (5), Lu(CH3COO) (6), Lu (7)} phthalocyanines. A series of various spectroscopic methods (UV-vis, FT-IR, mass, and 1H NMR spectroscopy) were performed for the characterization of the newly synthesized compounds. The potential of compounds 2, 3, and 6 as photosensitizing materials for photodynamic and sonophotodynamic therapies was evaluated by photophysical, photochemical, and sonochemical methods. The highest singlet quantum yields were obtained for the zinc phthalocyanine derivative 3 by performing photochemical and sonochemical methods. In addition, several biological activities of the new compounds 1-7 were investigated. The newly synthesized phthalocyanines exhibited excellent DPPH scavenging activity and also DNA nuclease activity. The antimicrobial activity of the new compounds was evaluated by the disc diffusion assay. Effective microbial cell viability inhibition was observed with phthalocyanine macromolecules. The photodynamic antimicrobial therapy of the phthalocyanines showed 100% bacterial inhibition when compared to the control. They also exhibited significant biofilm inhibition activity against S. aureus and P. aeruginosa. These results indicate that new phthalocyanines are promising photodynamic antimicrobial therapies for the treatment of infectious diseases.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Isoindoles/pharmacology , Metals/pharmacology , Photosensitizing Agents/pharmacology , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Bacteria/drug effects , Bacteria/growth & development , Biofilms/drug effects , Biphenyl Compounds/chemistry , Candida parapsilosis/drug effects , Candida parapsilosis/growth & development , Candida tropicalis/drug effects , Candida tropicalis/growth & development , Deoxyribonucleases/chemistry , Halogenation , Isoindoles/chemistry , Metals/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Picrates/chemistry , Singlet Oxygen/chemistry
9.
Photochem Photobiol ; 98(4): 894-906, 2022 07.
Article in English | MEDLINE | ID: mdl-34727392

ABSTRACT

As thiazoles and fluorinated groups are well known as active species of hybrid pharmaceutical agents, this study aimed to evaluate the synergic effect of these groups on the biological features of phthalocyanines for the first time in the hope of discovering efficient pharmaceutical agents. Therefore, a new phthalonitrile derivative namely 4-(2-(4-methylthiazol-5-yl)ethoxy)-5-(4-(trifluoromethoxy)phenoxy)phthalonitrile (1) and its metal-free (2)/metal phthalocyanines (3-5) were prepared and characterized using various spectroscopic techniques. Solubility of new phthalocyanines (2-5) was examined in a series of polar and nonpolar solvents. Additionally, sono/photochemical methods were applied to examine the photophysical and sono/photochemical properties of new zinc phthalocyanine to measure its potential as a probable material for sono/photodynamic therapies. The antioxidant activities of compounds (1-5) were evaluated using the DPPH scavenging activity method and the highest radical scavenging activity was obtained 92.13% (200 mg L-1 ) for manganese phthalocyanine. All the phthalocyanines demonstrated high DNA nuclease activity, as well. The antimicrobial activities of compounds (1-5) were investigated using disk diffusion and microdilution methods. The phthalocyanines exhibited effective microbial cell inhibition activity against Escherichia coli (E. coli). Antimicrobial photodynamic therapy activity was investigated against E. coli by LED irradiation. Compounds (2-5) acted as photosynthesizers. Also, they displayed significant biofilm inhibition activity against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa).


Subject(s)
Anti-Infective Agents , Photosensitizing Agents , Anti-Infective Agents/pharmacology , Escherichia coli , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Pharmaceutical Preparations , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Staphylococcus aureus
10.
Dalton Trans ; 50(8): 2736-2745, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33533372

ABSTRACT

This study presents the synthesis of a series of new tetra-substituted phthalocyanines bearing 3,5-bis(trifluoromethyl)phenoxy groups at non-peripheral positions. The resulting macromolecules were characterized by performing different spectroscopic methods including 1H NMR, UV-Vis, FT-IR, and mass spectroscopy. In this study, the synergistic effect of phthalocyanines used as colorants in ink formulas with other chemicals available was probed for the first time. The synergistic effect of methyl laurate on the biological and antioxidant activities of the compounds (2-5) was investigated. Moreover, the therapeutic properties of the complexes (3, 6, and 7) were investigated using photochemical methods. Upon comparison, complex 7 (ΦΔ = 0.42) was found to be more effective than complex 6 (ΦΔ = 0.40) and complex 3 (ΦΔ = 0.27) in terms of producing singlet oxygen. The results confirmed that the heavy atom effect improves the therapeutic effects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Coordination Complexes/pharmacology , Isoindoles/pharmacology , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Bacillus subtilis/drug effects , Biphenyl Compounds/antagonists & inhibitors , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Escherichia coli/drug effects , Halogenation , Isoindoles/chemical synthesis , Isoindoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Photochemical Processes , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Picrates/antagonists & inhibitors , Staphylococcus aureus/drug effects
11.
Photochem Photobiol ; 97(2): 270-277, 2021 03.
Article in English | MEDLINE | ID: mdl-32885462

ABSTRACT

This study presents the preparation of a new phthalonitrile derivative namely 3-(4-(trifluoromethoxy)thiophenoxy)phthalonitrile (1) and a series of its metallated phthalocyanines (M = Zn (II) (1a) and In(III) (1b)). In addition, the peripheral analog of the indium phthalocyanine chloride (2b) was newly synthesized. Characterization of the resulting compounds was carried out by utilizing various spectroscopic methods such as FT-IR, 1 H NMR and UV-Vis spectroscopy. The influence of concentration on aggregation properties of compound 1a was investigated at different concentrations of DMSO. The effect of solvent type on aggregation properties of compound 1a was studied, as well. According to the referred procedures, the macrocyclic molecules (2a, 3a-b and 4a-b) were prepared. The effect of some parameters including metal ion, the position of the substituent and the connected atom (oxo or thio) on photochemical and photophysical features of compounds (1a-b, 2a-b, 3a-b, and 4a-b) was studied for evaluation of their potential as a photosensitizer in PDT, comparatively. The highest singlet oxygen quantum yields (ΦΔ  = 0.71 for 1a and 0.80 for 2b) were obtained for complexes 1a and 1b in DMSO. The photophysical and photochemical features of the studied macromolecules are therefore suitable for photodynamic therapy applications.


Subject(s)
Fluorine/chemistry , Isoindoles/chemistry , Metals/chemistry , Photochemistry , Photochemotherapy/methods , Quantum Theory , Singlet Oxygen/chemistry , Spectrum Analysis/methods
12.
Arch Pharm (Weinheim) ; 354(4): e2000340, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33300638

ABSTRACT

A series of new peripherally or nonperipherally substituted phthalocyanines bearing 4-(trifluoromethoxy)thiophenyl groups was synthesized. In addition, a new metal-free phthalocyanine bearing 4-(trifluoromethoxy)phenoxy on the nonperipheral position was prepared. The resulting phthalocyanines were characterized using some spectroscopic techniques such as 1 H nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and UV-Vis spectroscopy, together with elemental analysis. When the tyrosinase enzyme inhibition activities of the synthesized phthalocyanines were examined, molecules 2b and 3b showed an inhibitory activity against the enzyme with IC50 values of 176.2 ± 0.65 and 284.4 ± 1.03, respectively. The inhibition types of the molecules and standard inhibitor kojic acid were found as competitive for 2b, mixed for 1b and kojic acid, and uncompetitive for 3b. Antioxidant activities were also assessed by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assays, and the molecules showed moderate antioxidant activities.


Subject(s)
Agaricales/enzymology , Enzyme Inhibitors/pharmacology , Fluorine/pharmacology , Isoindoles/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Fluorine/chemistry , Isoindoles/chemical synthesis , Isoindoles/chemistry , Molecular Structure , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship
13.
Turk J Chem ; 44(3): 656-669, 2020.
Article in English | MEDLINE | ID: mdl-33488184

ABSTRACT

An inexpensive, simple, highly sensitive, and rapid fluorimetric method was developed for the analysis of pseudoephedrine hydrochloride at trace levels. The method is based on the recovery of fluorescence of Rh6G dye due to the interaction of pseudoephedrine hydrochloride with Rh6G-Au NPs complex, which results in the release of Rh6G from the complex and halting fluorescence resonance energy transfer between Rh6G and Au NPs. The intensity of fluorescence was directly proportional to the concentration of the analyte, which was used for its determination. Experimental factors were optimized by response-surface methodology. Under optimum conditions, the calibration curve was linear over the range of 15-150 ng mL-1 and the limit of detection (LOD) was 10 ng mL-1. Percent relative standard deviation (n= 5) for determination of 50 ng mL-1 pseudoephedrine hydrochloride was 3.74%. The method was successfully used for determining the analyte in human blood serum and in pharmaceutical formulations. The possible mechanistic description of the analytical reaction was proposed on the basis of TEM, FT-IR, and fluorescence spectra analysis.

14.
Luminescence ; 30(3): 257-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25059920

ABSTRACT

A rapid, simple, inexpensive and highly sensitive spectrofluorimetric method was developed for the determination of trace amounts of some tetracyclines (TCs), namely tetracycline hydrochloride (TCH), oxytetracycline hydrochloride (OTCH) and minocycline hydrochloride (MCH). Binding rhodamine B (RhB) to gold nanoparticles (Au NPs) resulted in quenching of the fluorescence of RhB by a resonance energy transfer (FRET) mechanism, with Au NPs as the energy acceptors. The presence of TCs caused the release of RhB molecules and recovered their fluorescence, and this was used as a basis for the quantitative determination of TCs. The reaction was monitored spectrofluorimetrically by measuring the increase in fluorescence of RhB at 572 nm starting 5 min after mixing the reagents in Tris buffer solution (pH 6.5). The effect of various experimental factors such as buffer type, pH, concentrations of the involved reagents and reaction time were studied to optimize the reaction conditions. Under optimum conditions, the calibration graphs were linear within the ranges 2.08 × 10(-9) -1.04 × 10(-6) mol/L, 2.01 × 10(-9) -1.00 × 10(-6) mol/L and 2.02 × 10(-9) -1.01 × 10(-6) mol/L and detection limits (LODs) of 0.61 × 10(-9) , 0.32 × 10(-9) and 0.66 × 10(-9) mol/L were calculated for TCH, OTCH and MCH, respectively, with corresponding percent relative standard deviations (%RSDs) of 1.18, 1.21 and 1.54 (n = 5). The method was successfully applied to the determination of TCs in drinking water, human urine, bovine milk and breast milk samples.


Subject(s)
Spectrometry, Fluorescence/methods , Tetracyclines/analysis , Animals , Buffers , Calibration , Drinking Water/analysis , Drinking Water/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/metabolism , Food Analysis/methods , Food Contamination/analysis , Gold , Humans , Hydrogen-Ion Concentration , Limit of Detection , Milk/chemistry , Milk, Human , Nanoparticles/metabolism , Oxytetracycline/analysis , Rhodamines/metabolism , Tetracyclines/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...