Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Math Biosci ; : 109226, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838933

ABSTRACT

We consider compartmental models of communicable disease with uncertain contact rates. Stochastic fluctuations are often added to the contact rate to account for uncertainties. White noise, which is the typical choice for the fluctuations, leads to significant underestimation of the disease severity. Here, starting from reasonable assumptions on the social behavior of individuals, we model the contacts as a Markov process which takes into account the temporal correlations present in human social activities. Consequently, we show that the mean-reverting Ornstein-Uhlenbeck (OU) process is the correct model for the stochastic contact rate. We demonstrate the implication of our model on two examples: a Susceptibles-Infected-Susceptibles (SIS) model and a Susceptibles-Exposed-Infected-Removed (SEIR) model of the COVID-19 pandemic and compare the results to the available US data from the Johns Hopkins University database. In particular, we observe that both compartmental models with white noise uncertainties undergo transitions that lead to the systematic underestimation of the spread of the disease. In contrast, modeling the contact rate with the OU process significantly hinders such unrealistic noise-induced transitions. For the SIS model, we derive its stationary probability density analytically, for both white and correlated noise. This allows us to give a complete description of the model's asymptotic behavior as a function of its bifurcation parameters, i.e., the basic reproduction number, noise intensity, and correlation time. For the SEIR model, where the probability density is not available in closed form, we study the transitions using Monte Carlo simulations. Our modeling approach can be used to quantify uncertain parameters in a broad range of biological systems.

2.
Chaos ; 32(4): 043112, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35489849

ABSTRACT

To predict rare extreme events using deep neural networks, one encounters the so-called small data problem because even long-term observations often contain few extreme events. Here, we investigate a model-assisted framework where the training data are obtained from numerical simulations, as opposed to observations, with adequate samples from extreme events. However, to ensure the trained networks are applicable in practice, the training is not performed on the full simulation data; instead, we only use a small subset of observable quantities, which can be measured in practice. We investigate the feasibility of this model-assisted framework on three different dynamical systems (Rössler attractor, FitzHugh-Nagumo model, and a turbulent fluid flow) and three different deep neural network architectures (feedforward, long short-term memory, and reservoir computing). In each case, we study the prediction accuracy, robustness to noise, reproducibility under repeated training, and sensitivity to the type of input data. In particular, we find long short-term memory networks to be most robust to noise and to yield relatively accurate predictions, while requiring minimal fine-tuning of the hyperparameters.


Subject(s)
Deep Learning , Computer Simulation , Memory, Long-Term , Neural Networks, Computer , Reproducibility of Results
3.
Phys Rev E ; 104(3-1): 034201, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654100

ABSTRACT

We consider rare transitions induced by colored noise excitation in multistable systems. We show that undesirable transitions can be mitigated by a simple time-delay feedback control if the control parameters are judiciously chosen. We devise a parsimonious method for selecting the optimal control parameters, without requiring any Monte Carlo simulations of the system. This method relies on a new nonlinear Fokker-Planck equation whose stationary response distribution is approximated by a rapidly convergent iterative algorithm. In addition, our framework allows us to accurately predict, and subsequently suppress, the modal drift and tail inflation in the controlled stationary distribution. We demonstrate the efficacy of our method on two examples, including an optical laser model perturbed by multiplicative colored noise.

4.
Chaos ; 31(6): 063118, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34241325

ABSTRACT

We develop a data-driven method, based on semi-supervised classification, to predict the asymptotic state of multistable systems when only sparse spatial measurements of the system are feasible. Our method predicts the asymptotic behavior of an observed state by quantifying its proximity to the states in a precomputed library of data. To quantify this proximity, we introduce a sparsity-promoting metric-learning (SPML) optimization, which learns a metric directly from the precomputed data. The optimization problem is designed so that the resulting optimal metric satisfies two important properties: (i) it is compatible with the precomputed library and (ii) it is computable from sparse measurements. We prove that the proposed SPML optimization is convex, its minimizer is non-degenerate, and it is equivariant with respect to the scaling of the constraints. We demonstrate the application of this method on two multistable systems: a reaction-diffusion equation, arising in pattern formation, which has four asymptotically stable steady states, and a FitzHugh-Nagumo model with two asymptotically stable steady states. Classifications of the multistable reaction-diffusion equation based on SPML predict the asymptotic behavior of initial conditions based on two-point measurements with 95% accuracy when a moderate number of labeled data are used. For the FitzHugh-Nagumo, SPML predicts the asymptotic behavior of initial conditions from one-point measurements with 90% accuracy. The learned optimal metric also determines where the measurements need to be made to ensure accurate predictions.

5.
Chaos ; 30(1): 013149, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32013458

ABSTRACT

In stochastic multistable systems driven by the gradient of a potential, transitions between equilibria are possible because of noise. We study the ability of linear delay feedback control to mitigate these transitions, ensuring that the system stays near a desirable equilibrium. For small delays, we show that the control term has two effects: (i) a stabilizing effect by deepening the potential well around the desirable equilibrium and (ii) a destabilizing effect by intensifying the noise by a factor of (1-τα)-1/2, where τ and α denote the delay and the control gain, respectively. As a result, successful mitigation depends on the competition between these two factors. We also derive analytical results that elucidate the choice of the appropriate control gain and delay that ensure successful mitigations. These results eliminate the need for any Monte Carlo simulations of the stochastic differential equations and, therefore, significantly reduce the computational cost of determining the suitable control parameters. We demonstrate the application of our results on two examples.

6.
Phys Rev E ; 100(3-1): 033110, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639920

ABSTRACT

Extreme events that arise spontaneously in chaotic dynamical systems often have an adverse impact on the system or the surrounding environment. As such, their mitigation is highly desirable. Here, we introduce a control strategy for mitigating extreme events in a turbulent shear flow. The controller combines a probabilistic prediction of the extreme events with a deterministic actuator. The predictions are used to actuate the controller only when an extreme event is imminent. When actuated, the controller only acts on the degrees of freedom that are involved in the formation of the extreme events, exerting minimal interference with the flow dynamics. As a result, the attractors of the controlled and uncontrolled systems share the same chaotic core (containing the nonextreme events) and only differ in the tail of their distributions. We propose that such adaptive low-dimensional controllers should be used to mitigate extreme events in general chaotic dynamical systems, beyond the shear flow considered here.

7.
Sci Adv ; 3(9): e1701533, 2017 09.
Article in English | MEDLINE | ID: mdl-28948226

ABSTRACT

Extreme events are ubiquitous in a wide range of dynamical systems, including turbulent fluid flows, nonlinear waves, large-scale networks, and biological systems. We propose a variational framework for probing conditions that trigger intermittent extreme events in high-dimensional nonlinear dynamical systems. We seek the triggers as the probabilistically feasible solutions of an appropriately constrained optimization problem, where the function to be maximized is a system observable exhibiting intermittent extreme bursts. The constraints are imposed to ensure the physical admissibility of the optimal solutions, that is, significant probability for their occurrence under the natural flow of the dynamical system. We apply the method to a body-forced incompressible Navier-Stokes equation, known as the Kolmogorov flow. We find that the intermittent bursts of the energy dissipation are independent of the external forcing and are instead caused by the spontaneous transfer of energy from large scales to the mean flow via nonlinear triad interactions. The global maximizer of the corresponding variational problem identifies the responsible triad, hence providing a precursor for the occurrence of extreme dissipation events. Specifically, monitoring the energy transfers within this triad allows us to develop a data-driven short-term predictor for the intermittent bursts of energy dissipation. We assess the performance of this predictor through direct numerical simulations.

8.
Chaos ; 27(5): 053104, 2017 May.
Article in English | MEDLINE | ID: mdl-28576102

ABSTRACT

We review and test twelve different approaches to the detection of finite-time coherent material structures in two-dimensional, temporally aperiodic flows. We consider both mathematical methods and diagnostic scalar fields, comparing their performance on three benchmark examples: the quasiperiodically forced Bickley jet, a two-dimensional turbulence simulation, and an observational wind velocity field from Jupiter's atmosphere. A close inspection of the results reveals that the various methods often produce very different predictions for coherent structures, once they are evaluated beyond heuristic visual assessment. As we find by passive advection of the coherent set candidates, false positives and negatives can be produced even by some of the mathematically justified methods due to the ineffectiveness of their underlying coherence principles in certain flow configurations. We summarize the inferred strengths and weaknesses of each method, and make general recommendations for minimal self-consistency requirements that any Lagrangian coherence detection technique should satisfy.

9.
Phys Rev E ; 94(3-1): 032212, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739820

ABSTRACT

Drawing upon the bursting mechanism in slow-fast systems, we propose indicators for the prediction of such rare extreme events which do not require a priori known slow and fast coordinates. The indicators are associated with functionals defined in terms of optimally time-dependent (OTD) modes. One such functional has the form of the largest eigenvalue of the symmetric part of the linearized dynamics reduced to these modes. In contrast to other choices of subspaces, the proposed modes are flow invariant and therefore a projection onto them is dynamically meaningful. We illustrate the application of these indicators on three examples: a prototype low-dimensional model, a body-forced turbulent fluid flow, and a unidirectional model of nonlinear water waves. We use Bayesian statistics to quantify the predictive power of the proposed indicators.

10.
Chaos ; 25(8): 087412, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26328583

ABSTRACT

Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.

11.
Chaos ; 23(2): 023101, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822466

ABSTRACT

Hyperbolic Lagrangian Coherent Structures (LCSs) are locally most repelling or most attracting material surfaces in a finite-time dynamical system. To identify both types of hyperbolic LCSs at the same time instance, the standard practice has been to compute repelling LCSs from future data and attracting LCSs from past data. This approach tacitly assumes that coherent structures in the flow are fundamentally recurrent, and hence gives inconsistent results for temporally aperiodic systems. Here, we resolve this inconsistency by showing how both repelling and attracting LCSs are computable at the same time instance from a single forward or a single backward run. These LCSs are obtained as surfaces normal to the weakest and strongest eigenvectors of the Cauchy-Green strain tensor.

12.
Chaos ; 22(1): 013128, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22463004

ABSTRACT

Using the recently developed variational theory of hyperbolic Lagrangian coherent structures (LCSs), we introduce a computational approach that renders attracting and repelling LCSs as smooth, parametrized curves in two-dimensional flows. The curves are obtained as trajectories of an autonomous ordinary differential equation for the tensor lines of the Cauchy-Green strain tensor. This approach eliminates false positives and negatives in LCS detection by separating true exponential stretching from shear in a frame-independent fashion. Having an explicitly parametrized form for hyperbolic LCSs also allows for their further in-depth analysis and accurate advection as material lines. We illustrate these results on a kinematic model flow and on a direct numerical simulation of two-dimensional turbulence.


Subject(s)
Algorithms , Nonlinear Dynamics , Oscillometry/methods , Rheology/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...