Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35215129

ABSTRACT

Accurate infectious disease forecasting can inform efforts to prevent outbreaks and mitigate adverse impacts. This study compares the performance of statistical, machine learning (ML), and deep learning (DL) approaches in forecasting infectious disease incidences across different countries and time intervals. We forecasted three diverse diseases: campylobacteriosis, typhoid, and Q-fever, using a wide variety of features (n = 46) from public datasets, e.g., landscape, climate, and socioeconomic factors. We compared autoregressive statistical models to two tree-based ML models (extreme gradient boosted trees [XGB] and random forest [RF]) and two DL models (multi-layer perceptron and encoder-decoder model). The disease models were trained on data from seven different countries at the region-level between 2009-2017. Forecasting performance of all models was assessed using mean absolute error, root mean square error, and Poisson deviance across Australia, Israel, and the United States for the months of January through August of 2018. The overall model results were compared across diseases as well as various data splits, including country, regions with highest and lowest cases, and the forecasted months out (i.e., nowcasting, short-term, and long-term forecasting). Overall, the XGB models performed the best for all diseases and, in general, tree-based ML models performed the best when looking at data splits. There were a few instances where the statistical or DL models had minutely smaller error metrics for specific subsets of typhoid, which is a disease with very low case counts. Feature importance per disease was measured by using four tree-based ML models (i.e., XGB and RF with and without region name as a feature). The most important feature groups included previous case counts, region name, population counts and density, mortality causes of neonatal to under 5 years of age, sanitation factors, and elevation. This study demonstrates the power of ML approaches to incorporate a wide range of factors to forecast various diseases, regardless of location, more accurately than traditional statistical approaches.

2.
J Biogeogr ; 46(9): 2042-2055, 2019 Sep.
Article in English | MEDLINE | ID: mdl-33041433

ABSTRACT

AIM: Understanding how spatial scale of study affects observed dispersal patterns can provide insights into spatiotemporal population dynamics, particularly in systems with significant long-distance dispersal (LDD). We aimed to investigate the dispersal gradients of two rusts of wheat with spores of similar size, mass, and shape, over multiple spatial scales. We hypothesized that a single dispersal kernel could fit the dispersal from all spatial scales well, and that it would be possible to obtain similar results in spatiotemporal increase of disease when modeling based on differing scales. LOCATION: Central Oregon and St. Croix Island. TAXA: Puccinia striiformis f. sp. tritici, Puccinia graminis f. sp. tritici, Triticum aestivum. METHODS: We compared empirically-derived primary disease gradients of cereal rust across three spatial scales: local (inoculum source and sampling unit = 0.0254 m, spatial extent = 1.52m) field-wide (inoculum source = 1.52 m, sampling unit = 0.305 m, and spatial extent = 91.44 m), and regional (inoculum source and sampling unit = 152 m, spatial extent = 10.7 km). We then examined whether disease spread in spatially explicit simulations depended upon the scale at which data were collected by constructing a compartmental time-step model. RESULTS: The three data sets could be fit well by a single inverse-power law dispersal kernel. Simulating epidemic spread at different spatial resolutions resulted in similar patterns of spatiotemporal spread. Dispersal kernel data obtained at one spatial scale can be used to represent spatiotemporal disease spread at a larger spatial scale. MAIN CONCLUSIONS: Organisms spread by aerially dispersed small propagules that exhibit LDD may follow similar dispersal patterns over a several hundred- or thousand-fold expanse of spatial scale. Given that the primary mechanisms driving aerial dispersal remain constant, it may be possible to extrapolate across scales when empirical data are unavailable at a scale of interest.

3.
Plant Dis ; 103(2): 177-191, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30592698

ABSTRACT

Epidemics caused by long-distance dispersed pathogens result in some of the most explosive and difficult to control diseases of both plants and animals (including humans). Yet the factors influencing disease spread, especially in the early stages of the outbreak, are not well-understood. We present scaling relationships, of potentially widespread relevance, that were developed from more than 15 years of field and in silico single focus studies of wheat stripe rust spread. These relationships emerged as a consequence of accounting for a greater proportion of the fat-tailed disease gradient that may be frequently underestimated in disease spread studies. Leptokurtic dispersal gradients (highly peaked and fat-tailed) are relatively common in nature and they can be represented by power law functions. Power law scale invariance properties generate patterns that repeat over multiple spatial scales, suggesting important and predictable scaling relationships between disease levels during the first generation of disease outbreaks and subsequent epidemic spread. Experimental wheat stripe rust outbreaks and disease spread simulations support theoretical scaling relationships from power law properties and suggest that relatively straightforward scaling approximations may be useful for projecting the spread of disease caused by long-distance dispersed pathogens. Our results suggest that, when actual dispersal/disease data are lacking, an inverse power law with exponent = 2 may provide a reasonable approximation for modeling disease spread. Furthermore, our experiments and simulations strongly suggest that early control treatments with small spatial extent are likely to be more effective at suppressing an outbreak caused by a long-distance dispersed pathogen than would delayed treatment of a larger area. The scaling relationships we detail and the associated consequences for disease control may be broadly applicable to plant and animal pathogens characterized by non-exponentially bound, fat-tailed dispersal gradients.


Subject(s)
Basidiomycota , Models, Biological , Plant Diseases/microbiology , Plant Diseases/prevention & control , Animals , Basidiomycota/physiology , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...