Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853962

ABSTRACT

Lipoprotein kinetics are a crucial factor in understanding lipoprotein metabolism since a prolonged time in circulation can contribute to the atherogenic character of apolipoprotein-B (ApoB)-containing lipoproteins (B-lps). Here, we report a method to directly measure lipoprotein kinetics in live developing animals. We developed a zebrafish geneticly encoded reporter, LipoTimer, in which endogenous ApoBb.1 is fused to the photoconvertible fluorophore Dendra2 which shift its emission profile from green to red upon UV exposure. By quantifying the red population of ApoB-Dendra2 over time, we found that B-lp turnover in wild-type larvae becomes faster as development proceeds. Mutants with impaired B-lp uptake or lipolysis present with increased B-lp levels and half-life. In contrast, mutants with impaired B-lp triglyceride loading display slightly fewer and smaller-B-lps, which have a significantly shorter B-lp half-life. Further, we showed that chronic high-cholesterol feeding is associated with a longer B-lp half-life in wild-type juveniles but does not lead to changes in B-lp half-life in lipolysis deficient apoC2 mutants. These data support the hypothesis that B-lp lipolysis is suppressed by the flood of intestinal-derived B-lps that follow a high-fat meal.

2.
Zebrafish ; 21(2): 109-118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621216

ABSTRACT

Project BioEYES celebrated 20 years in K12 schools during the 2022-2023 school year. Using live zebrafish (Danio rerio) during week-long science experiments, sparks the interest of students and teachers from school districts, locally and globally. Over the past two decades, BioEYES has been replicated in different ways based on the interest and capacity of our partners. This article discusses several of the successful models, the common challenges, and how each BioEYES site has adopted guiding principles to help foster their success. The core principles of (a) reinforcing content that students are expected to learn in schools, while focusing on the students BECOMING scientists through hands-on experimentation and (b) establishing trust and buy-in from collaborating teachers and partners are what has led to BioEYES being sustained and replicated over the past two decades.


Subject(s)
Science , Zebrafish , Animals , Humans , Science/education , Schools , Students
3.
Nat Commun ; 15(1): 2095, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453914

ABSTRACT

Vertebrates transport hydrophobic triglycerides through the circulatory system by packaging them within amphipathic particles called Triglyceride-Rich Lipoproteins. Yet, it remains largely unknown how triglycerides are loaded onto these particles. Mutations in Phospholipase A2 group 12B (PLA2G12B) are known to disrupt lipoprotein homeostasis, but its mechanistic role in this process remains unclear. Here we report that PLA2G12B channels lipids within the lumen of the endoplasmic reticulum into nascent lipoproteins. This activity promotes efficient lipid secretion while preventing excess accumulation of intracellular lipids. We characterize the functional domains, subcellular localization, and interacting partners of PLA2G12B, demonstrating that PLA2G12B is calcium-dependent and tightly associated with the membrane of the endoplasmic reticulum. We also detect profound resistance to atherosclerosis in PLA2G12B mutant mice, suggesting an evolutionary tradeoff between triglyceride transport and cardiovascular disease risk. Here we identify PLA2G12B as a key driver of triglyceride incorporation into vertebrate lipoproteins.


Subject(s)
Endoplasmic Reticulum , Lipoproteins , Animals , Mice , Biological Transport , Endoplasmic Reticulum/metabolism , Lipoproteins/metabolism , Triglycerides/metabolism
5.
Arterioscler Thromb Vasc Biol ; 44(5): 1053-1064, 2024 May.
Article in English | MEDLINE | ID: mdl-38482694

ABSTRACT

Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.


Subject(s)
Apolipoproteins B , Disease Models, Animal , Lipid Metabolism , Zebrafish , Zebrafish/genetics , Animals , Lipid Metabolism/genetics , Apolipoproteins B/metabolism , Apolipoproteins B/genetics , Humans , Phenotype , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Mutation
6.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328083

ABSTRACT

Oxidative stress perturbs lipid homeostasis and contributes to metabolic diseases. Though ignored compared to mitochondrial oxidation, the endoplasmic reticulum (ER) generates reactive oxygen species requiring antioxidant quality control. Using multi-organismal profiling featuring Drosophila, zebrafish, and mammalian cells, here we characterize the paraoxonase-like APMAP as an ER-localized protein that promotes redox and lipid homeostasis and lipoprotein maturation. APMAP-depleted mammalian cells exhibit defective ER morphology, elevated ER and oxidative stress, lipid droplet accumulation, and perturbed ApoB-lipoprotein homeostasis. Critically, APMAP loss is rescued with chemical antioxidant NAC. Organismal APMAP depletion in Drosophila perturbs fat and lipoprotein homeostasis, and zebrafish display increased vascular ApoB-containing lipoproteins, particles that are atherogenic in mammals. Lipidomics reveals altered polyunsaturated phospholipids and increased ceramides upon APMAP loss, which perturbs ApoB-lipoprotein maturation. These ApoB-associated defects are rescued by inhibiting ceramide synthesis. Collectively, we propose APMAP is an ER-localized antioxidant that promotes lipid and lipoprotein homeostasis.

7.
Arterioscler Thromb Vasc Biol ; 44(2): 328-333, 2024 02.
Article in English | MEDLINE | ID: mdl-38059350

ABSTRACT

The tremendous burden of lipid metabolism diseases, coupled with recent developments in human somatic gene editing, has motivated researchers to propose population-wide somatic gene editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) within the livers of otherwise healthy humans. The best-characterized molecular function of PCSK9 is its ability to regulate plasma LDL (low-density lipoprotein) levels through promoting LDL receptor degradation. Individuals with loss-of-function PCSK9 variants have lower levels of plasma LDL and reduced cardiovascular disease. Gain-of-function variants of PCSK9 are strongly associated with familial hypercholesterolemia. A new therapeutic strategy delivers CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats; CRISPR-associated protein 9) specifically to liver cells to edit the wild-type alleles of PCSK9 with the goal of producing a loss-of-function allele. This direct somatic gene editing approach is being pursued despite the availability of US Food and Drug Administration-approved PCSK9 inhibitors that lower plasma LDL levels. Here, we discuss other characterized functions of PCSK9 including its role in infection and host immunity. We explore important factors that may have contributed to the evolutionary selection of PCSK9 in several vertebrates, including humans. Until such time that more fully understand the multiple biological roles of PCSK9, the ethics of permanently editing the gene locus in healthy, wild-type populations remains highly questionable.


Subject(s)
Proprotein Convertase 9 , Proprotein Convertases , Animals , Humans , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Serine Endopeptidases/genetics , Alleles , Receptors, LDL/genetics
8.
bioRxiv ; 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38045334

ABSTRACT

Even though many experimental approaches benefit from tracking individual larval animals, there is yet to be a commercial zebrafish rack system designed to accomplish this task. Thus, we invented playpens, an acrylic and screen container, to raise 12 individual zebrafish juveniles per standard 10 L tank on an existing recirculating fish system. During a week-long experiment, fish raised in playpens grow to the same size as conventionally raised juveniles.

9.
Zebrafish ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153390

ABSTRACT

Even though many experimental approaches benefit from tracking individual juvenile animals, there is yet to be a commercial zebrafish rack system designed to accomplish this task. Thus, we invented playpens, an acrylic, and screen container, to raise 12 individual zebrafish juveniles per standard 10 L tank on an existing recirculating fish system. During a week-long experiment, fish raised in playpens grow to the same size as conventionally raised juveniles.

10.
bioRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961364

ABSTRACT

Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited ß-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.

12.
Article in English | MEDLINE | ID: mdl-36738984

ABSTRACT

The intestine is responsible for efficient absorption and packaging of dietary lipids before they enter the circulatory system. This review provides a comprehensive overview of how intestinal enterocytes from diverse model organisms absorb dietary lipid and subsequently secrete the largest class of lipoproteins (chylomicrons) to meet the unique needs of each animal. We discuss the putative relationship between diet and metabolic disease progression, specifically Type 2 Diabetes Mellitus. Understanding the molecular response of intestinal cells to dietary lipid has the potential to undercover novel therapies to combat metabolic syndrome.


Subject(s)
Diabetes Mellitus, Type 2 , Lipid Metabolism , Animals , Humans , Lipid Metabolism/physiology , Intestinal Absorption , Intestines , Dietary Fats/metabolism
13.
Elife ; 112022 Nov 21.
Article in English | MEDLINE | ID: mdl-36408801

ABSTRACT

The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (Ichino et al., 2020), including the lrpprc locus. Here, we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.


Subject(s)
Disease Models, Animal , Liver Diseases , Mitochondrial Diseases , Animals , Canada , Genetic Therapy , Liver Diseases/genetics , Liver Diseases/therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Neoplasm Proteins/genetics , Zebrafish/genetics
14.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Article in English | MEDLINE | ID: mdl-36017776

ABSTRACT

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Subject(s)
Cysts , Zebrafish , Animals , Zebrafish/genetics , Proprotein Convertases/genetics , Mutation, Missense/genetics , Tunicamycin , Actins/genetics , Disease Models, Animal , Liver/pathology , Cysts/genetics , TOR Serine-Threonine Kinases/genetics , Mammals
15.
BMC Genomics ; 23(1): 225, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317738

ABSTRACT

BACKGROUND: The ability of animals and their microbiomes to adapt to starvation and then restore homeostasis after refeeding is fundamental to their continued survival and symbiosis. The intestine is the primary site of nutrient absorption and microbiome interaction, however our understanding of intestinal adaptations to starvation and refeeding remains limited. Here we used RNA sequencing and 16S rRNA gene sequencing to uncover changes in the intestinal transcriptome and microbiome of zebrafish subjected to long-term starvation and refeeding compared to continuously fed controls. RESULTS: Starvation over 21 days led to increased diversity and altered composition in the intestinal microbiome compared to fed controls, including relative increases in Vibrio and reductions in Plesiomonas bacteria. Starvation also led to significant alterations in host gene expression in the intestine, with distinct pathways affected at early and late stages of starvation. This included increases in the expression of ribosome biogenesis genes early in starvation, followed by decreased expression of genes involved in antiviral immunity and lipid transport at later stages. These effects of starvation on the host transcriptome and microbiome were almost completely restored within 3 days after refeeding. Comparison with published datasets identified host genes responsive to starvation as well as high-fat feeding or microbiome colonization, and predicted host transcription factors that may be involved in starvation response. CONCLUSIONS: Long-term starvation induces progressive changes in microbiome composition and host gene expression in the zebrafish intestine, and these changes are rapidly reversed after refeeding. Our identification of bacterial taxa, host genes and host pathways involved in this response provides a framework for future investigation of the physiological and ecological mechanisms underlying intestinal adaptations to food restriction.


Subject(s)
Microbiota , Transcriptome , Animals , Intestines/microbiology , RNA, Ribosomal, 16S , Zebrafish/genetics
16.
J Autism Dev Disord ; 52(5): 2357-2366, 2022 May.
Article in English | MEDLINE | ID: mdl-34060003

ABSTRACT

This study examined the feasibility, acceptability, and efficacy of a video game-based digital therapeutic combining applied behavior analysis techniques and gaze-contingent eye tracking to target emotion recognition in youth with autism spectrum disorder (ASD). Children aged 4-14 years with ASD were randomized to complete Lookware™ (n = 25) or a control video game (n = 29). Results from a 2 × 2 mixed ANOVA revealed that children in the intervention condition demonstrated significant improvements in emotion recognition from pre- to post-intervention compared to children in the control condition, F(1,52) = 17.48, p < 0.001. Children and staff perceived high feasibility and acceptability of Lookware™. Study results demonstrated the feasibility, acceptability, and preliminary efficacy of Lookware™.


Subject(s)
Applied Behavior Analysis , Autism Spectrum Disorder , Video Games , Adolescent , Autism Spectrum Disorder/psychology , Autism Spectrum Disorder/therapy , Child , Emotions , Eye-Tracking Technology , Fixation, Ocular , Humans
17.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: mdl-34387191

ABSTRACT

Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.


Subject(s)
Adipocytes/metabolism , Lipid Droplets/metabolism , Perilipin-2/metabolism , Perilipin-3/metabolism , Zebrafish Proteins/metabolism , Adipose Tissue/metabolism , Animals , Animals, Genetically Modified , Homeostasis , Lipid Metabolism , Perilipin-2/genetics , Perilipin-3/genetics , Zebrafish/metabolism
18.
J Biol Chem ; 295(52): 18284-18300, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33109611

ABSTRACT

Oxygen regulates hypoxia-inducible factor (HIF) transcription factors to control cell metabolism, erythrogenesis, and angiogenesis. Whereas much has been elucidated about how oxygen regulates HIF, whether lipids affect HIF activity is un-known. Here, using cultured cells and two animal models, we demonstrate that lipoprotein-derived fatty acids are an independent regulator of HIF. Decreasing extracellular lipid supply inhibited HIF prolyl hydroxylation, leading to accumulation of the HIFα subunit of these heterodimeric transcription factors comparable with hypoxia with activation of downstream target genes. The addition of fatty acids to culture medium suppressed this signal, which required an intact mitochondrial respiratory chain. Mechanistically, fatty acids and oxygen are distinct signals integrated to control HIF activity. Finally, we observed lipid signaling to HIF and changes in target gene expression in developing zebrafish and adult mice, and this pathway operates in cancer cells from a range of tissues. This study identifies fatty acids as a physiological modulator of HIF, defining a mechanism for lipoprotein regulation that functions in parallel to oxygen.


Subject(s)
Fatty Acids/pharmacology , Gene Expression Regulation/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipoproteins/chemistry , Oxygen/metabolism , Animals , Gene Expression Profiling , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lipoproteins/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Zebrafish
19.
PLoS Genet ; 16(8): e1008941, 2020 08.
Article in English | MEDLINE | ID: mdl-32760060

ABSTRACT

Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.


Subject(s)
Carrier Proteins/genetics , Lipids/genetics , Lipoproteins/genetics , Triglycerides/genetics , Animals , Fatty Liver/genetics , Fatty Liver/pathology , Gastrointestinal Tract/metabolism , Humans , Immunoprecipitation , Lipid Droplets/metabolism , Lipoproteins/metabolism , Mutation, Missense/genetics , Point Mutation/genetics , Protein Transport/genetics , Triglycerides/metabolism , Zebrafish/genetics
20.
Nat Commun ; 11(1): 3707, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694507

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...