Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391653

ABSTRACT

Treatment of chronic wounds is challenging, and the development of different formulations based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the advantage of synergistically combining the bioactivity of the protein with the biocompatibility and hydrogel properties of polysaccharides. In this study, a hydrogel formulation containing insulin, chitosan, and hydroxypropyl methyl cellulose (Chi/HPMC/Ins) was prepared and characterized by FTIR, thermogravimetric, and gel point analyses. The in vitro cell viability and cell migration potential of the Chi/HPMC/Ins hydrogel were evaluated in human keratinocyte cells (HaCat) by MTT and wound scratch assay. The hydrogel was applied to excisional full-thickness wounds in diabetic mice for twenty days for in vivo studies. Cell viability studies indicated no cytotoxicity of the Chi/HPMC/Ins hydrogel. Moreover, the Chi/HPMC/Ins hydrogel promoted faster gap closure in the scratch assay. In vivo, the wounds treated with the Chi/HPMC/Ins hydrogel resulted in faster wound closure, formation of a more organized granulation tissue, and hair follicle regeneration. These results suggest that Chi/HPMC/Ins hydrogels might promote wound healing in vitro and in vivo and could be a new potential dressing for wound healing.

2.
Carbohydr Polym ; 326: 121633, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142079

ABSTRACT

Polysaccharides are among the most abundant bioresources on earth and consequently need to play a pivotal role when addressing existential scientific challenges like climate change and the shift from fossil-based to sustainable biobased materials. The Research Roadmap 2040 of the European Polysaccharide Network of Excellence (EPNOE) provides an expert's view on how future research and development strategies need to evolve to fully exploit the vast potential of polysaccharides as renewable bioresources. It is addressed to academic researchers, companies, as well as policymakers and covers five strategic areas that are of great importance in the context of polysaccharide related research: (I) Materials & Engineering, (II) Food & Nutrition, (III) Biomedical Applications, (IV) Chemistry, Biology & Physics, and (V) Skills & Education. Each section summarizes the state of research, identifies challenges that are currently faced, project achievements and developments that are expected in the upcoming 20 years, and finally provides outlines on how future research activities need to evolve.


Subject(s)
Polysaccharides
3.
Front Microbiol ; 14: 1219692, 2023.
Article in English | MEDLINE | ID: mdl-37485503

ABSTRACT

Probiotics have demonstrated oral health benefits by influencing the microbiome and the host. Although promising, their current use is potentially constrained by several restrictions. One such limiting factor lies in the prevailing preparation of a probiotic product. To commercialize the probiotic, a shelf stable product is achieved by temporarily inactivating the live probiotic through drying or freeze drying. Even though a lyophilized probiotic can be kept dormant for an extended period of time, their viability can be severely compromised, making their designation as probiotics questionable. Additionally, does the application of an inactive probiotic directly into the oral cavity make sense? While the dormancy may allow for survival on its way towards the gut, does it affect their capacity for oral colonisation? To evaluate this, 21 probiotic product for oral health were analysed for the number of viable (probiotic), culturable (CFU) and dead (postbiotic) cells, to verify whether the commercial products indeed contain what they proclaim. After isolating and uniformly lyophilizing three common probiotic species in a simple yet effective lyoprotective medium, the adhesion to saliva covered hydroxyapatite discs of lyophilized probiotics was compared to fresh or reactivated lyophilized probiotics. Unfortunately, many of the examined products failed to contain the claimed amounts of viable cells, but also the strains used were inadequately characterized and lacked clinical evidence for that unknown strain, questioning their label of a 'probiotic'. Additionally, lyophilized probiotics demonstrated low adhesive capacity compared to their counterparts, prompting the question of why fresh or reactivated probiotics are not currently used.

4.
Molecules ; 28(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985449

ABSTRACT

Pullulan is a linear exopolysaccharide, produced in the fermentation media of Aureobasidium pullulans, with a variety of applications in the food and pharmaceutical industries. Pullulan derivatives have growing potential for biomedical applications, but the high cost of pullulan biofabrication currently restricts its commercial use. Better control over pullulan yield, molecular weight and melanin production by altering fermentation conditions could improve the economics. In this study, the effects of sugar and mineral salt stresses on the pullulan production of A. pullulans ATCC 42023 were examined in batch processes. The chemical structure of the recovered pullulan was characterized by FTIR and NMR spectroscopy, and the molecular weight distribution was obtained via SEC. Pullulan yield and melanin production varied when the conditions were adjusted, and pullulans with different molar masses were obtained. Higher-yield pullulan production and a lower polydispersity index were observed when CuSO4 was added to the fermentation in comparison with the control and with the addition of sugars and other salts. Biofabrication of pullulan under stress conditions is a promising strategy to enhance biopolymer yield and to obtain pullulan with a targeted molecular weight.


Subject(s)
Ascomycota , Salts , Salts/pharmacology , Sugars , Melanins , Ascomycota/chemistry , Fermentation , Minerals/pharmacology
5.
Molecules ; 28(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36677747

ABSTRACT

Lignin is an underutilized high-potential biopolymer that has been extensively studied over the past few decades. However, lignin still has drawbacks when compared with well-known petroleum-based equivalents, and the production of tailored lignin fractions is highly in demand. In this work, a new method for the fractionation of Lignoboost Kraft Lignin (LKL) is proposed by using two different hydrotropes: sodium xylenesulfonate (SXS) and sodium cumenesulfonate (SCS). The different fractions are obtained by sequentially decreasing the hydrotropic concentration with the addition of water. Four and three different fractions were retrieved from the use of SXS and SCS, respectively. The LKL and respective fractions were analysed, and compared by GPC, FTIR-ATR, 1H-NMR, 13C-NMR, 31P NMR, 2D HSQC and SEM. The fractions showed different molecular weights, polydispersity, and amount of functional groups. Our water-based lignin fractionation platform can potentially be combined with different lignin extraction and processing technologies, with the advantage of hydrotrope recycling.

6.
Int J Pharm X ; 5: 100146, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36593986

ABSTRACT

Cellulose beads emerge as carriers for poorly water-soluble drugs due to their eco-friendly raw materials and favorable porous structure. However, drug dissolution may be limited by their poor swelling ability and the presence of closed pores caused by shrinkage of the pristine cellulose beads. In this study, novel cellulose beads that can swell in acidic environment were prepared by introducing ethylenediamine (EDA) on dialdehyde cellulose (DAC), thereby addressing the shrinkage and closed pore problem of cellulose beads. The effect of the ratio of EDA on the swelling behavior and amine content of beads was studied. Three model drugs with different physicochemical properties were selected to study the physical state of loaded drugs and their release behavior. According to the results of XRPD and DSC, indomethacin and itraconazole loaded in the beads were amorphous at a drug loading of 20%, but fenofibrate was partially crystalline. Both bead size and the ratio of amine groups influenced the release behavior of the model drugs. The in vitro dissolution results showed that the cationic beads greatly improved the solubility and dissolution rate of the drug compared with the crystalline drug. Beads with a small size and high ratio of EDA tend to achieve a better drug dissolution rate and cumulative release percentage. Physical stability studies of the itraconazole-loaded beads were also implemented under four different temperature/humidity conditions for up to two months. The results showed that crystallization only appeared after two months of storage at 40°/75% RH, and the drug maintained a non-crystalline state in the other three storage conditions (0 °C/0 %RH, 0 °C/32 %RH, 25 °C/32 %RH). In conclusion, the novel pH-responsive cationic cellulose beads show great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.

7.
Biomacromolecules ; 24(1): 132-140, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36542490

ABSTRACT

Xylooligosaccharides (XOSs) gained much attention for their use in food and animal feed, attributed to their prebiotic function. These short-chained carbohydrates can be enzymatically produced from xylan, one of the most prevalent forms of hemicellulose. In this work, endo-1,4-ß-xylanase from Thermotoga maritima was immobilized on cellulose-based beads with the goal of producing xylooligosaccharides with degrees of polymerization (DPs) in the range of 4-6 monomeric units. More specifically, the impact of different spacer arms, tethers connecting the enzyme with the particle, on the expressed enzymatic activity and oligosaccharide yield was investigated. After surface functionalization of the cellulose beads, the presence of amines was confirmed with time of flight secondary ion mass spectrometry (TOF-SIMS), and the influence of different spacer arms on xylanase activity was established. Furthermore, XOSs (DPs 2-6) with up to 58.27 mg/g xylan were obtained, which were greatly enriched in longer oligosaccharides. Approximately 80% of these XOSs displayed DPs between 4 and 6. These findings highlight the importance of topochemical engineering of carriers to influence enzyme activity, and the work puts forward an enzymatic system focusing on the production of longer xylooligosaccharides.


Subject(s)
Cellulose , Endo-1,4-beta Xylanases , Endo-1,4-beta Xylanases/chemistry , Xylans/chemistry , Hydrolysis , Oligosaccharides/chemistry , Glucuronates/chemistry
8.
Int J Pharm ; 615: 121491, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35063594

ABSTRACT

Cellulose beads are porous spherical particles with promising futures for drug delivery applications. In this study, novel dialdehyde cellulose (DAC) beads are developed by periodate oxidation of pristine cellulose for oral delivery of weakly basic poorly water-soluble drugs. Diazepam and itraconazole were studied as model drugs. Drug loadings in DAC beads up to 40% were obtained. Depending on the drug loading, complete or partial amorphization of drugs in DAC beads was observed. Drugs in the amorphous state not only presented a higher extent of dissolution from the DAC beads compared to the crystalline model drug, but the obtained concentration was also supersaturated. This supersaturation is attributed to the amorphization of the drugs in the beads in conjunction with the dissolution of the DAC beads at a neutral pH of the dissolution medium. Further, the effects of two different solvent systems used in the lyophilization step during the preparation of the DAC beads (100% water and 90/10% tert-butanol/water mixture) on their structure were investigated. Interestingly, the selection of the solvent system greatly impacted the bead structure, resulting in radically different drug loading capacity, physical properties, and release behavior of the model drugs. In summary, this is the first study that reports on exploiting soluble, porous, dialdehyde cellulose beads, showing great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.


Subject(s)
Drug Carriers , Water , Cellulose/analogs & derivatives , Porosity , Solubility
9.
Food Chem X ; 12: 100157, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34816122

ABSTRACT

This study was aimed to characterize Gracilaria lemaneiformis polysaccharides and evaluate their protective effects on Lipopolysaccharide-induced injury in IEC-6 cells. The G. lemaneiformis polysaccharide was degraded by UV/H2O2 treatment and purified to three fractions named GLP-1.0 M, GLP-1.4 M and GLP-1.6 M. The purified fractions were mainly composed of galactose, glucose and xylose. The structural analysis showed that GLP-1.6 M was a typical sulfated red alga polysaccharide containing the linear backbone of ß-(1 â†’ 3)- and α-(1 â†’ 4)-linked galactosyl residues, anhydro-galactose units. In the Lipopolysaccharide-induced IEC-6 cells model, GLP-1.6 M exerted the strongest in vitro anti-inflammatory activity by inhibiting the release and expressions of tumor necrosis factor-α, interleukin-6 and interleukin-1ß by 89.93%, 67.82% and 38.06%, respectively. Meanwhile, GLP-1.6 M enhanced the intestinal barrier function via up-regulating the expressions of tight junctions and mucin. Therefore, the purified polysaccharide from G. lemaneiformis could be a promising candidate for maintaining intestinal health in the food and pharmaceutical industries.

10.
11.
Carbohydr Polym ; 261: 117875, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33766362

ABSTRACT

Hydrogels are three-dimensional polymeric networks capable of absorbing large amounts of water or biological fluids with the properties resembling natural living tissues. Herein, polyvinyl alcohol (PVA)/N-succinyl chitosan (NSCS)/lincomycin hydrogels for wound dressing were prepared by the freezing/thawing method, then characterized by FTIR, SEM, and TGA. The compression strength, swelling behavior, water retention capacity, antibacterial activity, drug release and cytotoxicity were systematically investigated. The results showed that the introduction of NSCS remarkably enhanced the swelling capacity, leading to the maximum swelling ratio of 19.68 g/g in deionized water. The optimal compression strength of 0.75 MPa was achieved with 30 % NSCS content.Additionally, the incorporation of lincomycin brought a remarkable antibacterial activity against both Escherichia coli and Staphylococcus aureus. Specifically, 77.71 % of Staphylococcus aureus was inhibited with 75 µg/mL lincomycin, while the MTT assay demonstrated the nontoxic nature of the composite hydrogels. In summary, this PVA/NSCS/lincomycin hydrogel showed promising potential for wound dressing.


Subject(s)
Bandages, Hydrocolloid , Chitosan/chemistry , Lincomycin/administration & dosage , Polyvinyl Alcohol/chemistry , Wound Healing/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Chitosan/chemical synthesis , Chitosan/pharmacology , Drug Liberation , HaCaT Cells , Humans , Lincomycin/chemistry , Lincomycin/pharmacokinetics , Materials Testing , Microbial Sensitivity Tests , Polyvinyl Alcohol/chemical synthesis , Polyvinyl Alcohol/pharmacology
12.
Molecules ; 26(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672078

ABSTRACT

The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release.


Subject(s)
Cellulose, Oxidized/chemistry , Cyclic N-Oxides/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Gastrointestinal Tract/physiology , Calorimetry, Differential Scanning , Drug Liberation , Fenofibrate/pharmacology , Hydrogen-Ion Concentration , Indomethacin/pharmacology , Kinetics , Powders , X-Ray Diffraction
13.
Int J Biol Macromol ; 168: 46-58, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33301845

ABSTRACT

The protective layer of the body, the skin is often prone to damage due to several factors like trauma, accidents, stress and hazardous exposure. This requires the skin to regenerate itself which is a finely regulated process. To hasten the process and prevent further damage, the dressing material is of prime importance. Herein, we fabricated poly-3-hydroxybutyric acid (P)-sodium alginate (S)-(core-shell) nanofibrous matrix as protective scaffold for the skin tissue regeneration in excision wound model. The arginine (A) and layered double hydroxides-bacitracin (LB) were incorporated into the core and shell of the nanofibrous matrix using co-axial electrospinning. The core-shell nanofibers assist in the synergistic, controlled delivery of L-arginine, and bacitracin with major role in the protein synthesis, cell signaling and infection control at wound site respectively. In vitro biocompatibility was confirmed by testing on dermal fibroblasts. Furthermore, in vivo studies revealed the synergistic effect of both the components in active healing of wounds. The biochemical, histochemical and immunohistochemical studies reveal that the arginine loaded scaffold aided cellular migration and proliferation. These results suggest that the simultaneous existence of the drug bacitracin-nano clay complex and L-arginine in the shell and core respectively has conferred interesting dynamic properties to the scaffold towards wound healing.


Subject(s)
3-Hydroxybutyric Acid/chemistry , Alginates/chemistry , Wound Healing/drug effects , 3-Hydroxybutyric Acid/pharmacology , Alginates/pharmacology , Animals , Arginine/pharmacology , Bacitracin/pharmacology , Bandages , Hydroxybutyrates/pharmacology , Male , Mice , NIH 3T3 Cells , Nanofibers/chemistry , Polyesters/chemistry , Rats , Rats, Sprague-Dawley , Skin , Spectroscopy, Fourier Transform Infrared/methods , Tissue Engineering , Tissue Scaffolds/chemistry
14.
Carbohydr Polym ; 252: 117183, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183630

ABSTRACT

The elucidation of cell-surface interactions and the development of model platforms to help uncover their underlying mechanisms remains vital to the design of effective biomaterials. To this end, dextran palmitates with varying degrees of substitution were synthesised with a multipurpose functionality: an ability to modulate surface energy through surface chemistry, and an ideal thermal behaviour for patterning. Herein, dextran palmitate films are produced by spin coating, and patterned by thermal nanoimprint lithography with nano-to-microscale topographies. These films of moderately hydrophobic polysaccharide esters with low nanoscale roughness performed as well as fibronectin coatings in the culture of bovine aortic endothelial cells. Upon patterning, they display distinct regions of roughness, restricting cell adhesion to the smoothest surfaces, while guiding multicellular arrangements in the patterned topographies. The development of biomaterial interfaces through topochemical fabrication such as this could prove useful in understanding protein and cell-surface interactions.


Subject(s)
Biocompatible Materials/chemistry , Cell Adhesion , Dextrans/chemistry , Endothelial Cells/cytology , Esters/chemistry , Tissue Scaffolds , Animals , Cattle , Cell Culture Techniques , Surface Properties
15.
Molecules ; 26(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375128

ABSTRACT

The demand for more ecological, highly engineered hydrogel beads is driven by a multitude of applications such as enzyme immobilization, tissue engineering and superabsorbent materials. Despite great interest in hydrogel fabrication and utilization, the interaction of hydrogels with water is not fully understood. In this work, NMR relaxometry experiments were performed to study bead-water interactions, by probing the changes in bead morphology and surface energy resulting from the incorporation of carboxymethyl cellulose (CMC) into a cellulose matrix. The results show that CMC improves the swelling capacity of the beads, from 1.99 to 17.49, for pure cellulose beads and beads prepared with 30% CMC, respectively. Changes in water mobility and interaction energy were evaluated by NMR relaxometry. Our findings indicate a 2-fold effect arising from the CMC incorporation: bead/water interactions were enhanced by the addition of CMC, with minor additions having a greater effect on the surface energy parameter. At the same time, bead swelling was recorded, leading to a reduction in surface-bound water, enhancing water mobility inside the hydrogels. These findings suggest that topochemical engineering by adjusting the carboxymethyl cellulose content allows the tuning of water mobility and porosity in hybrid beads and potentially opens up new areas of application for this biomaterial.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Cellulose/chemistry , Chemical Engineering , Magnetic Resonance Spectroscopy , Microspheres , Algorithms , Chemical Engineering/methods , Drug Carriers/chemistry , Hydrogels/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical
16.
Biomacromolecules ; 21(6): 2512-2524, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32343892

ABSTRACT

Tissue engineering is currently one the fastest growing engineering fields, requiring fabrication of advanced and multifunctional materials to be used as scaffolds or dressing for tissue regeneration. In this work, a bilayer matrix was fabricated by electrospinning of a hybrid cellulose acetate nanofibers (CA) containing bioactive latex or Ciprofloxacin over highly interconnected collagen (CSPG) 3D matrix previously obtained by a freeze-drying process. The bilayer matrix was fabricated with a nanofibrous part as the primary (top) layer and a spongy porous part as the secondary (bottom) layer by combining electrospinning and freeze-drying techniques to enhance the synergistic effect of both materials corresponding to physical and biological properties. The final material was physicochemically characterized using Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The bilayer matrix exhibited nanofibrous and 3D porous structure with properties such as high porosity, swelling, and stability required for soft-tissue-engineering applications. Furthermore, the in vitro biological and fluorescence properties of the matrix were tested against NIH 3T3 fibroblast and human keratinocyte (HaCaT) cell lines and showed good cell adhesion and proliferation over the bilayer matrix. Thus, the synergistic combination of nanofibrous material deposition onto to the collagenous porous material has proved efficient in the fabrication of a bilayer matrix for skin-tissue-engineering applications.


Subject(s)
Nanofibers , Bandages , Cell Proliferation , Cellulose/analogs & derivatives , Collagen , Humans , Tissue Engineering , Tissue Scaffolds
17.
Eur J Oral Sci ; 128(1): 81-88, 2020 02.
Article in English | MEDLINE | ID: mdl-31994247

ABSTRACT

This study investigated the effect of discontinuous cellulose microfibers with various loading fractions on selected physical properties of glass polyalkenoate (glass ionomer) cement (GIC). Fiber-reinforced GIC (Exp-GIC) was prepared by adding discontinuous cellulose microfiber (with an average length of 500 µm) at various mass ratios (1, 2, 3, 4, and 5 mass%) to the powder of conventional GIC (GC Fuji IX) using a high-speed mixing device. Fracture toughness, work of fracture, and compressive strength were determined for each experimental and control material. The specimens (n = 6) were wet stored (37°C for 1 d) before testing. A scanning electron microscope equipped with an energy dispersive spectroscope was used to examine the surface of fibers after treatment with cement liquid. Data were analyzed using ANOVA. The Exp-GIC (5 mass%) specimen had statistically significantly higher fracture toughness (0.9 MPa.m1/2 ) than unreinforced material (0.4 MPa.m1/2 ). On the other hand, Exp-GIC with 1 mass% displayed the highest compressive strength (116 MPa) among all tested groups. The use of discontinuous cellulose microfibers with conventional GIC matrix considerably increased the toughening performance compared with the particulate GICs used.


Subject(s)
Glass Ionomer Cements , Cellulose , Dental Materials , Materials Testing
18.
ACS Omega ; 4(1): 320-330, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459331

ABSTRACT

Cellulose-based materials are very attractive for emerging bioeconomy as they are renewable, inexpensive, and environmentally friendly. Cellulose beads are spherical and porous and can be highly engineered to be used as catalyst support material. This type of inorganic catalysts is cost-effective and suitable for multiple re-usage and has been rarely explored in cellulose reaction research. In this work, NiFe-layered double hydroxide (LDH) was tailor-made in situ on anionic cellulose beads to form a hybrid, supported photocatalyst for the first time. The hybrid beads were prepared in a size larger than the pulp fibers in order to make the catalysis reaction heterogeneous in nature. Hydrophilic pulp fibers were converted into hydrophobic pulp by photocatalytic topochemical grafting of ethyl acrylate using the LDH-cellulose bead catalyst. The approach identified for the modification of the pulp fibers is the "hydrogen abstraction-UV photografting" because the low-energy, UV radiation-induced grafting offers advantages, such as a reduced degradation of the backbone polymer and a control over the grafting reaction. After grafting, the pulp fibers showed increased water repellency and unaltered thermal stability, indicating the hydrophobic, plasticizing nature of the pulp, which in turn accounts for its thermoformable behavior. These acrylated pulp fibers can be further designed/customized for waterproof or oil absorption applications.

19.
Beilstein J Nanotechnol ; 10: 589-605, 2019.
Article in English | MEDLINE | ID: mdl-30873331

ABSTRACT

Topochemical engineering of hybrid materials is an efficient way of synthesizing hydrophobic and highly tensile fiber composites by utilizing the intermolecular hydrogen bonds in natural materials. These materials include wood pulp fibers, abietic acid (resin acid) and inexpensive metal salts. In this work, a hybrid composite was created using bleached and unbleached kraft pulp fibers as cellulose platform. In situ co-precipitation of layered double hydroxide (LDH) was performed to grow LDH crystals on the surface of the cellulose fibers, followed by the immobilization of abietic acid (AA) on LDH-grafted cellulose. Here we aimed to benefit from the hydrogen bonding between -OH groups of cellulose and LDH, and the -COOH groups of AA to obtain charge-directed assembly of one material on the other material. Thus, composite hybrid fibers (C-HF) were produced and then characterized by optical (CAM), spectroscopic (XRD, IR) and microscopic techniques (SEM) to determine their average length and distribution, structure and purity, bonding, and morphology. These fibers further were tested for water contact angle (hydrophobicity), oil absorption (lipophilicity), tensile strength and ISO brightness measurements. The performance of C-HF was compared with unmodified reference fibers (REF), fibers composed with only AA (C-F) and LDH-hybridized fibers (HF). The results revealed a variety of correlations between materials and their properties due to characteristic surface morphology, functional groups, hydrogen bonding and natural co-materials such as lignin and hemicelluloses. Attractive and repulsive van der Waals forces between material entities play a crucial role in the resulting properties.

20.
Carbohydr Polym ; 205: 601-625, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30446147

ABSTRACT

Biological studies on the importance of carbohydrate moieties in tissue engineering have incited a growing interest in the application of polysaccharides as scaffolds over the past two decades. This review provides a perspective of the recent approaches in developing polysaccharide scaffolds, with a focus on their chemical modification, structural versatility, and biological applicability. The current major limitations are assessed, including structural reproducibility, the narrow scope of polysaccharide modifications being applied, and the effective replication of the extracellular environment. Areas with opportunities for further development are addressed with an emphasis on the application of rationally designed polysaccharides and their importance in elucidating the molecular interactions necessary to properly design tissue engineering materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...