Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014896

ABSTRACT

In this work, a new modeling approach is presented to obtain a two-dimensional transport lattice of a biological cellular system for the calculation of the potential distribution throughout the system and investigation of the corresponding membrane electroporation. The presented model has been obtained by a modified bilayer model of the cell membrane. This modified membrane model allows for an effective inclusion of the shape of the cell membrane in the potential calculation. The results of the model have shown good agreement with the results of the well-known Schwan equation and COMSOL Multiphysics for the circular cell. The simulation results show that both membranes of a mitochondrion can be simultaneously electroporated by an alternating voltage source with frequencies between 1 MHz and 1 GHz.

2.
Biomed Tech (Berl) ; 68(4): 351-360, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-36872631

ABSTRACT

OBJECTIVES: Several studies have revealed that after spinal cord injury (SCI), in acute and sub-acute phase the spinal cord neurons below the injury are alive and could stimulate by use of electrical pulses. Spinal cord electrical stimulation could generate movement for paralyzed limbs and is a rehabilitation strategy for paralyzed patients. An innovative idea for controlling spinal cord electrical stimulation onset time is presented in current study. METHODS: In our method, the time of applying electrical pulse on the spinal cord is according to rat behavioral movement and two movements behaviors are recognized only based on rat EEG theta rhythm on the treadmill line. Briefly, 5 rats were placed on the treadmill and the animals experienced zero or 12 m/min speeds. RESULTS: These speeds were recognized based on EEG signals and off-line periodogram analysis. Finally, the electrical stimulation pulses had been applied to the spinal cord if the results of the EEG analysis had detected running behavior. CONCLUSIONS: These findings may guide future research in utilizing theta rhythms for the recognition of animal motor behavior and designing electrical stimulation systems based on it.


Subject(s)
Spinal Cord Injuries , Theta Rhythm , Rats , Animals , Movement , Hippocampus/physiology
3.
Sci Rep ; 12(1): 20486, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443353

ABSTRACT

Increasing demand for wearable devices has resulted in the development of soft sensors; however, an excellent soft sensor for measuring stretch, twist, and pressure simultaneously has not been proposed yet. This paper presents a novel, fully 3D, microfluidic-oriented, gel-based, and highly stretchable resistive soft sensor. The proposed sensor is multi-functional and could be used to measure stretch, twist, and pressure, which is the potential of using a fully 3D structure in the sensor. Unlike previous methods, in which almost all of them used EGaIn as the conductive material, in this case, we used a low-cost, safe (biocompatible), and ubiquitous conductive gel instead. To show the functionality of the proposed sensor, FEM simulations and a set of designed experiments were done, which show linear (99%), accurate (> 94.9%), and durable (tested for a whole of four hours) response of the proposed sensor. Then, the sensor was put through its paces on a female test subject's knee, elbow, and wrist to show the potential application of the sensor as a body motion sensor. Also, a fully 3D active foot insole was developed, fabricated, and evaluated to evaluate the pressure functionality of the sensor. The result shows good discrimination and pressure measurement for different foot sole areas. The proposed sensor has the potential to be used in real-world applications like rehabilitation, wearable devices, soft robotics, smart clothing, gait analysis, AR/VR, etc.


Subject(s)
Elbow Joint , Wearable Electronic Devices , Female , Humans , Microfluidics , Lower Extremity , Foot
4.
Sci Rep ; 10(1): 16513, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020544

ABSTRACT

As microfluidic chips are evolving to become a significant analysis tool toward POCT devices, it is crucial to make the cost and the time required for the fabrication process of these chips as low as possible. Because of the multidisciplinary nature of these systems and the collaboration of many different laboratories and organizations from vastly various fields with unequal types of equipment, it is essential to develop new techniques and materials to make the integration of disparate systems together more straightforward, accessible, and economical. In this paper, we present ethylene-vinyl acetate (EVA) as a new polymer-based material for the fabrication of different microfluidic chips, which brings new features and tools in fabrication, integration, and functionality of microfluidic systems. We put this material next to PDMS for comparison between various aspects of these materials. We have shown that besides the low-cost ability, ubiquitousness, geometrical modifiability, and ease of fabrication of EVA chips, due the lower hydrophobicity and lower terahertz (THz) absorption of EVA than PDMS, EVA chips, in comparison to PDMS counterparts, can work faster, have less number of channel blocking and can be used in THz biosensing application like metamaterial-based cancer detection. Finally, several devices are made using EVA to demonstrate the functionality and versatility of this material for the fabrication of microfluidic chips.

5.
J Cell Physiol ; 234(11): 20742-20754, 2019 11.
Article in English | MEDLINE | ID: mdl-31004353

ABSTRACT

A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and motor evoked potential (MEP) were performed to evaluate motor recovery as well as histological assessments to determine mechanisms of improvement. In accordance with our results, the hNSCs + Li and the Li groups showed significant improvement in locomotor scores and MEP. Also, Histological assessments revealed that transplanted hNSCs are capable of differentiation and migration along the spinal cord. Although NESTIN-positive cells were proliferated significantly in the Lithium group in comparison with control and the hNSCs + Li groups, the quantity of ED1 cells in the hNSCs + Li was significantly larger than the other two groups. Our results demonstrate that combinational therapy of hNSCs with lithium chloride and lithium chloride individually are adequate for ameliorating more than partial functional recovery and endogenous repair in spinal cord-injured rats.


Subject(s)
Lithium/therapeutic use , Neural Stem Cells/transplantation , Spinal Cord Injuries/therapy , Stem Cell Transplantation , Animals , Behavior, Animal , Cell Differentiation , Cell Movement , Cell Survival , Combined Modality Therapy , Disease Models, Animal , Evoked Potentials, Motor , Humans , Macrophages/pathology , Male , Motor Activity , Rats, Wistar , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Wound Healing
6.
Appl Opt ; 45(28): 7235-8, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16983408

ABSTRACT

We utilized and investigated the unique dependence of the magnitude and phase of the response on thermal cross talk between bolometer pixels in an array to measure the response of the devices through fewer monitoring devices. We show the feasibility of the proposed readout technique by use of two source pixels in an array, as the image-mapping devices, and one optically shielded pixel as the readout device. While the sensing pixels were electrical-contact free, the readout device was current biased in 4-probe current-bias configuration. Both the phase and the magnitude of the response due to the cross talk in the array were found to be strongly dependent on the modulation frequency and the distance between the sensing and the readout pixels. A series of measurements were designed to extract the response of each single-sensing pixel. By combining the measured data, the response of individual pixels could be extracted through the interpolation of the mapped responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...