Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468651

ABSTRACT

The intersection of expanding human development and wildland landscapes-the "wildland-urban interface" or WUI-is one of the most vexing contexts for fire management because it involves complex interacting systems of people and nature. Here, we document the dynamism and stability of an ancient WUI that was apparently sustainable for more than 500 y. We combine ethnography, archaeology, paleoecology, and ecological modeling to infer intensive wood and fire use by Native American ancestors of Jemez Pueblo and the consequences on fire size, fire-climate relationships, and fire intensity. Initial settlement of northern New Mexico by Jemez farmers increased fire activity within an already dynamic landscape that experienced frequent fires. Wood harvesting for domestic fuel and architectural uses and abundant, small, patchy fires created a landscape that burned often but only rarely burned extensively. Depopulation of the forested landscape due to Spanish colonial impacts resulted in a rebound of fuels accompanied by the return of widely spreading, frequent surface fires. The sequence of more than 500 y of perennial small fires and wood collecting followed by frequent "free-range" wildland surface fires made the landscape resistant to extreme fire behavior, even when climate was conducive and surface fires were large. The ancient Jemez WUI offers an alternative model for fire management in modern WUI in the western United States, and possibly other settings where local management of woody fuels through use (domestic wood collecting) coupled with small prescribed fires may make these communities both self-reliant and more resilient to wildfire hazards.

2.
Article in English | MEDLINE | ID: mdl-27216525

ABSTRACT

Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.This article is part of the themed issue 'The interaction of fire and mankind'.


Subject(s)
Climate Change/history , Climate , Fires/history , Forests , Pinus ponderosa/growth & development , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Medieval , Humans , New Mexico , North America
3.
Proc Natl Acad Sci U S A ; 113(6): E696-704, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26811459

ABSTRACT

Native American populations declined between 1492 and 1900 CE, instigated by the European colonization of the Americas. However, the magnitude, tempo, and ecological effects of this depopulation remain the source of enduring debates. Recently, scholars have linked indigenous demographic decline, Neotropical reforestation, and shifting fire regimes to global changes in climate, atmosphere, and the Early Anthropocene hypothesis. In light of these studies, we assess these processes in conifer-dominated forests of the Southwest United States. We compare light detection and ranging data, archaeology, dendrochronology, and historical records from the Jemez Province of New Mexico to quantify population losses, establish dates of depopulation events, and determine the extent and timing of forest regrowth and fire regimes between 1492 and 1900. We present a new formula for the estimation of Pueblo population based on architectural remains and apply this formula to 18 archaeological sites in the Jemez Province. A dendrochronological study of remnant wood establishes dates of terminal occupation at these sites. By combining our results with historical records, we report a model of pre- and post-Columbian population dynamics in the Jemez Province. Our results indicate that the indigenous population of the Jemez Province declined by 87% following European colonization but that this reduction occurred nearly a century after initial contact. Depopulation also triggered an increase in the frequency of extensive surface fires between 1640 and 1900. Ultimately, this study illustrates the quality of integrated archaeological and paleoecological data needed to assess the links between Native American population decline and ecological change after European contact.


Subject(s)
Conservation of Natural Resources , Fires , Forests , Indians, North American , Climate , Geography , Humans , Population Dynamics , Southwestern United States , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...