Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 137(18): 184305, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23163369

ABSTRACT

In this work, we report a joint experimental-theoretical investigation on interaction of vacuum-ultraviolet radiation with trimethylphosphate (TMP) molecule (C(3)H(9)O(4)P) in gas phase. This species together with tetrahydrofuran (THF) are model compounds of deoxyribose nucleic acids (DNA)/ribose nucleic acids (RNA) backbone. Absolute photoabsorption cross sections (σ(a)) and ionization yields (η) are measured using the double-ion-chamber technique in the 11.0-21.45 eV energy range. Photoionization (σ(i)) and neutral-decay (σ(n)) cross sections in absolute scale are also derived. Moreover, theoretical photoabsorption cross sections are calculated using the time-dependent density functional theory from the excitation threshold up to 16 eV. Good agreement between the present calculated and experimental photoabsorption cross sections in the 11.0-14.5 eV range is encouraging. Also, the present measured data of σ(a) and σ(i) for TMP are about 1.3 and 1.5 times of those of THF, respectively. Thus, the experimental evidences that the majority of strand breaks being located at sugar rings in the irradiated DNA/RNA backbone moiety may be induced by a possible migration of the hole, initially created at phosphate group, to the linked sugar groups. Finally, absolute partial photoionization cross sections are derived from the experimental time-of-flight mass spectra.


Subject(s)
Organophosphates/chemistry , Quantum Theory , Ultraviolet Rays , Photochemical Processes , Vacuum
2.
J Mass Spectrom ; 43(11): 1521-30, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18537140

ABSTRACT

Two ices, O2 and a mixture of O2 and N2, are bombarded by 252Cf fission fragments (FF) (approximately 65 MeV at target surface); the emitted positive and negative secondary ions are analyzed by time-of-flight mass spectrometry (TOF-SIMS). These studies shall enlighten sputtering from planetary and interstellar ices. Three temperature regions in the 28-42-K range are analyzed: (1) before N2 sublimation, in which hybrid chemical species are formed, (2) before O2 sublimation, in which the TOF mass spectrum is dominated by low-mass (O2)p cluster ions and (3) after O2 sublimation, in which (N2)p or (O2)p cluster ions are practically inexistent. In the first region, four hybrid ion series are observed: NOn-1+, N2On-2(+/-), and N4On-4(-). In the second region, two positive and negative ion series are identified: (O2)pO(+/-) and (O2)pO2(+/-). Their yield distributions are fitted by the sum of two decreasing exponentials, whose decay constants are the same for all series. It is observed that the cluster ion desorption from solid oxygen is very similar to that of other frozen gases, but its yield distribution oscillates with a three- or six-atom periodicity, suggesting O3 or 3O2 units in the cluster structure, respectively.

3.
J Mass Spectrom ; 42(10): 1333-41, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17902107

ABSTRACT

CO-NH(3) and CO-NH(3)-H(2)O ices at 25-130 K were bombarded by (252)Cf fission fragments ( approximately 65 MeV at the target surface) and the emitted secondary ions were analyzed by time-of-flight mass spectrometry (TOF-SIMS). It is observed that the mass spectra obtained from both ices have similar patterns. The production of hybrid ions (formed from CO and NH(3) molecules) emitted from CO-NH(3) ice has already been reported by R. Martinez et al., Int. J. Mass. Spectrom. 262 (2006) 195; here, the secondary ion emission and the modifications of the CO--NH(3) ice structure during the temperature increase of the ice are addressed. These studies are expected to throw light on the sputtering from planetary and interstellar ices and the possible formation of new organic molecules in CO-NH(3)-H(2)O ice by megaelectronvolt ion bombardment. The presence of water in the CO-NH(3) ice mixture generates molecular ion series such as (NH(3))(p-q)(H(2)O)(q)CO(+) and replaces the cluster series (NH(3))(n)NH(4) (+) emission by the hybrid series (NH(3))(I-i)(H(2)O)(i=1, 2...I)H(+). The distribution of NH(3) and H(2)O molecules within the cluster groups indicates that ammonia and water mix homogeneously in the icy condensate at T = 25 K. The desorption yield distribution of the cluster series (NH(3))(n)NH(4) (+) is described by the sum of two exponential functions: one, slow-decreasing, attributed to the fragmentation of the solid target into clusters; and another, fast-decreasing, due to a local sublimation followed by recombination of ammonia molecules. The analysis of the time-temperature dependence of these two yield components gives information on the formation process of molecular ions, the transient composition of the ice target and structural changes of the ice. Data suggest that the amorphous and porous structure of the NH(3) ice, formed by the condensation of the CO--NH(3) gas at T = 25 K, survives CO sublimation until the occurrence of a phase transition around 80 K, which produces a more fragile ice structure.

4.
J Am Soc Mass Spectrom ; 17(8): 1120-8, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16735128

ABSTRACT

Condensed CO and CO2 are bombarded by approximately 65 MeV 252Cf fission fragments and the desorbed ions are analyzed by time-of-flight mass spectrometry as a function of target temperature, in the ranges 25-33 K and 75-91 K, respectively. Absolute desorption yields are measured up to complete ice sublimation. The mass spectra of both ice targets reveal the emission of: (1) low mass ions, produced by direct Coulomb interaction of the highly charged projectiles and delta-electrons with CO and CO2, and (2) pronounced series of cluster ions. The basic ice cluster structures (CO)n and (CO2)n are present in the emitted cluster series such as (CO)nCO+, (CO2)nCO2+, or (CO2)nCO3-. In the case of CO ice, however, the intense production of the series Cn+, Cn-, and (CO)mCn+ shows that Cn is the main cluster structure, consequence of a higher concentration of free carbon atoms in the nuclear track plasma of CO ice than in that of CO2 ice. Ion cluster abundance is observed to decrease exponentially with cluster mass. The decay constant is k(n) congruent with 0.13, about the same for series based on (CO)n and (CO2)n, but a factor 3.3 higher for the Cn series. The Cn clusters are formed by gas-phase condensation, but the (CO)n and (CO2)n clusters are produced by fracturing of the highly excited solid around the nuclear track. A dramatic reduction of the ion desorption yield is observed near T = 29 K for CO and near T = 85 K for CO2, when fast sublimation occurs and ice thickness vanishes. Close to sublimation temperature, the decay constant of the (CO)2Cn+ series increases due to a decreasing formation probability of large Cn clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...