Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Article in English | MEDLINE | ID: mdl-38712683

ABSTRACT

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Subject(s)
Plant Leaves , Carbon Cycle , Carbon/metabolism
2.
Environ Pollut ; 338: 122703, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37804903

ABSTRACT

Fire represents a major threat to Mediterranean terrestrial ecosystems because of the high temperatures reached during summer. While massive loads of organic, inorganic compounds and particulate matter are known to be emitted into the atmosphere from forest wildfires, less is known about the emission from vegetation surrounding fires where air temperatures higher than 100 °C can be reached. Little information exists on the emission from dead vegetation accumulated as litter over forest soils, from which fires often starts. In this study, the response of litter to heatwaves generated by nearby fires was investigated under controlled conditions. Litter samples collected in a Mediterranean maquis and a Holm oak stand during summer were placed in an enclosure flushed with a continuous flow of air, the temperature of the enclosure was progressively risen to 125 °C, until some smog developed but no flaming occurred. The gas from the enclosure was analysed for the content of CO2, H2O, and volatile organic compounds (VOC) to assess the dependence of emission from the air temperature. VOC emission was continuously determined by Proton-Transfer-Reaction mass spectrometry with time of flight (PTR-TOF-MS). Data obtained were complemented with those obtained by collecting VOC on traps that were later analysed by Gas chromatography-mass spectrometry (GC-MS). Results provided useful information to understand the emission mechanism of VOC and other gases from dead vegetation present in the litter of two Mediterranean ecosystems, both dominated by evergreen vegetation species. The study demonstrated that low molecular weight VOC and aromatic hydrocarbons (arenes) produced mostly by thermal oxidation of the wood biopolymers are emitted in addition to isoprenoids typically associated to storage organs and photosynthetic pathway. Moreover, our results support parameterization of litter VOC emission processes in air quality models.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Temperature , Ecosystem , Biomass , Gas Chromatography-Mass Spectrometry/methods , Air Pollutants/analysis
3.
Sci Total Environ ; 903: 166149, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37567315

ABSTRACT

Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015-2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.

4.
Nat Commun ; 14(1): 3948, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402725

ABSTRACT

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.


Subject(s)
Ecosystem , Plants , Climate Change , Plant Leaves , Phenotype
5.
Plant Cell Environ ; 45(12): 3429-3444, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36222152

ABSTRACT

Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.


Subject(s)
Esters , Populus , Esters/metabolism , Ecosystem , Stress, Physiological , Populus/metabolism , Droughts , Plant Leaves/metabolism , Methanol/metabolism , Cell Wall/metabolism , Water/metabolism , Acetic Acid/metabolism
6.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33837072

ABSTRACT

Warming-induced carbon loss through terrestrial ecosystem respiration (Re) is likely getting stronger in high latitudes and cold regions because of the more rapid warming and higher temperature sensitivity of Re (Q 10). However, it is not known whether the spatial relationship between Q 10 and temperature also holds temporally under a future warmer climate. Here, we analyzed apparent Q 10 values derived from multiyear observations at 74 FLUXNET sites spanning diverse climates and biomes. We found warming-induced decline in Q 10 is stronger at colder regions than other locations, which is consistent with a meta-analysis of 54 field warming experiments across the globe. We predict future warming will shrink the global variability of Q 10 values to an average of 1.44 across the globe under a high emission trajectory (RCP 8.5) by the end of the century. Therefore, warming-induced carbon loss may be less than previously assumed because of Q 10 homogenization in a warming world.

7.
Environ Pollut ; 267: 115679, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254661

ABSTRACT

Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.


Subject(s)
Ozone , Populus , Butadienes , Hemiterpenes , Nitrogen , Ozone/toxicity , Phosphorus , Photosynthesis , Plant Leaves
8.
Environ Sci Technol ; 54(23): 14910-14922, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33169986

ABSTRACT

Cities are responsible for more than 80% of global greenhouse gas emissions. Sequestration of air pollutants is one of the main ecosystem services that urban forests provide to the citizens. The atmospheric concentration of several pollutants such as carbon dioxide (CO2), tropospheric ozone (O3), and particulate matter (PM) can be reduced by urban trees through processes of adsorption and deposition. We predict the quantity of CO2, O3, and PM removed by urban tree species with the multilayer canopy model AIRTREE in two representative urban parks in Italy: Park of Castel di Guido, a 3673 ha reforested area located northwest of Rome, and Park of Valentino, a 42 ha urban park in downtown Turin. We estimated a total annual removal of 1005 and 500 kg of carbon per hectare, 8.1 and 1.42 kg of ozone per hectare, and 8.4 and 8 kg of PM10 per hectare. We highlighted differences in pollutant sequestration between urban areas and between species, shedding light on the importance to perform extensive in situ measurements and modeling analysis of tree characteristics to provide realistic estimates of urban parks to deliver ecosystem services.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , Carbon Dioxide , Cities , Ecosystem , Italy , Parks, Recreational , Trees
9.
Glob Chang Biol ; 26(11): 6218-6234, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32893912

ABSTRACT

Rising ozone (O3 ) concentrations, coupled with an increase in drought frequency due to climate change, pose a threat to plant growth and productivity which could negatively affect carbon sequestration capacity of Northern Hemisphere (NH) forests. Using long-term observations of O3 mixing ratios and soil water content (SWC), we implemented empirical drought and O3 stress parameterizations in a coupled stomatal conductance-photosynthesis model to assess their impacts on plant gas exchange at three FLUXNET sites: Castelporziano, Blodgett and Hyytiälä. Model performance was evaluated by comparing model estimates of gross primary productivity (GPP) and latent heat fluxes (LE) against present-day observations. CMIP5 GCM model output data were then used to investigate the potential impact of the two stressors on forests by the middle (2041-2050) and end (2091-2100) of the 21st century. We found drought stress was the more significant as it reduced model overestimation of GPP and LE by ~11%-25% compared to 1%-11% from O3 stress. However, the best model fit to observations at all the study sites was obtained with O3 and drought stress combined, such that the two stressors counteract the impact of each other. With the inclusion of drought and O3 stress, GPP at CPZ, BLO and HYY is projected to increase by 7%, 5% and 8%, respectively, by mid-century and by 14%, 11% and 14% by 2091-2100 as atmospheric CO2 increases. Estimates were up to 21% and 4% higher when drought and O3 stress were neglected respectively. Drought stress will have a substantial impact on plant gas exchange and productivity, off-setting and possibly negating CO2 fertilization gains in future, suggesting projected increases in the frequency and severity of droughts in the NH will play a significant role in forest productivity and carbon budgets in future.


Subject(s)
Droughts , Ozone , Climate Change , Forests , Photosynthesis
10.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190747, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892724

ABSTRACT

In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (-38%) than in forests (-10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the 'normal year' of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Forests , Grassland , Plant Physiological Phenomena , Europe , Seasons
11.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190524, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892732

ABSTRACT

Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Farms , Forests , Grassland , Wetlands , Europe
12.
Environ Pollut ; 265(Pt A): 114909, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32540567

ABSTRACT

We investigated isoprene (ISO) emission and gas exchange in leaves from different positions along the vertical canopy profile of poplar saplings (Populus euramericana cv. '74/76'). For a growing season, plants were subjected to four N treatments, control (NC, no N addition), low N (LN, 50 kg N ha-1year-1), middle N (MN, 100 kg N ha-1year-1), high N (HN, 200 kg N ha-1year-1) and three O3 treatments (CF, charcoal-filtered ambient air; NF, non-filtered ambient air; NF + O3, NF + 40 ppb O3). Our results showed the effects of O3 and/or N on standardized ISO rate (ISOrate) and photosynthetic parameters differed along with the leaf position, with larger negative effects of O3 and positive effects of N on ISOrate and photosynthetic parameters in the older leaves. Expanded young leaves were insensitive to both treatments even at very high O3 concentration (67 ppb as 10-h average) and HN treatment. Significant O3 × N interactions were only found in middle and lower leaves, where ISOrate declined by O3 just when N was limited (NC and LN). With increasing light-saturated photosynthesis and chlorophyll content, ISOrate was reduced in the upper leaves but on the contrary increased in middle and lower leaves. The responses of ISOrate to AOT40 (accumulated exposure to hourly O3 concentrations > 40 ppb) and PODY (accumulative stomatal uptake of O3 > Y nmol O3 m-2 PLA s-1) were not significant in upper leaves, but ISOrate significantly decreased with increasing AOT40 or PODY under limited N supply in middle leaves but at all N levels in lower leaves. Overall, ISOrate changed along the vertical canopy profile in response to combined O3 and N exposure, a behavior that should be incorporated into multi-layer canopy models. Our results are relevant for modelling regional isoprene emissions under current and future O3 pollution and N deposition scenarios.


Subject(s)
Ozone , Populus , Butadienes , Hemiterpenes , Nitrogen , Photosynthesis , Plant Leaves
13.
Rev Geophys ; 58(1)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-33748825

ABSTRACT

Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.

14.
Plant Cell Environ ; 43(3): 611-623, 2020 03.
Article in English | MEDLINE | ID: mdl-31834637

ABSTRACT

Both ozone (O3 ) and drought can limit carbon fixation by forest trees. To cope with drought stress, plants have isohydric or anisohydric water use strategies. Ozone enters plant tissues through stomata. Therefore, stomatal closure can be interpreted as avoidance to O3 stress. Here, we applied an optimization model of stomata involving water, CO2 , and O3 flux to test whether isohydric and anisohydric strategies may affect avoidance of O3 stress by stomatal closure in four Mediterranean tree species during drought. The data suggest that stomatal closure represents a response to avoid damage to the photosynthetic mechanisms under elevated O3 depending on plant water use strategy. Under high-O3 and well-watered conditions, isohydric species limited O3 fluxes by stomatal closure, whereas anisohydric species activated a tolerance response and did not actively close stomata. Under both O3 and drought stress, however, anisohydric species enhanced the capacity of avoidance by closing stomata to cope with the severe oxidative stress. In the late growing season, regardless of the water use strategy, the efficiency of O3 stress avoidance decreased with leaf ageing. As a result, carbon assimilation rate was decreased by O3 while stomata did not close enough to limit transpirational water losses.


Subject(s)
Models, Biological , Ozone/pharmacology , Plant Stomata/physiology , Stress, Physiological/drug effects , Trees/physiology , Water/metabolism , Antioxidants/metabolism , Carbon/metabolism , Circadian Rhythm/drug effects , Mediterranean Region , Photosynthesis/drug effects , Plant Stomata/drug effects , Trees/drug effects , Vapor Pressure
15.
Sci Total Environ ; 692: 713-722, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31539979

ABSTRACT

Nocturnal transpiration may be a key factor influencing water use in plants. Tropospheric ozone (O3) and availability of nutrients such as nitrogen (N) and phosphorus (P) in the soil can affect daytime water use through stomata, but the combined effects of O3, N and P on night-time stomatal conductance (gs) are not known. We investigated the effects of O3 and soil availability of N and P on nocturnal gs and the dynamics of stomatal response after leaf severing in an O3-sensitive poplar clone (Oxford) subjected to combined treatments over a growing season in an O3 free air controlled exposure (FACE) facility. The treatments were two soil N levels (0 and 80 kg N ha-1; N0 and N80), three soil P levels (0, 40 and 80 kg P ha-1; P0, P40 and P80) and three O3 levels (ambient concentration, AA [35.0 ppb as hourly mean]; 1.5 × AA; 2.0 × AA). The analysis of stomatal dynamics after leaf severing suggested that O3 impaired stomatal closure execution. As a result, nocturnal gs was increased by 2.0 × AA O3 in August (+39%) and September (+108%). Night-time gs was correlated with POD0 (phytotoxic O3 dose) and increased exponentially after 40 mmol m-2 POD0. Such increase of nocturnal gs was attributed to the emission of ethylene due to 2.0 × AA O3 exposure, while foliar abscisic acid (ABA) or indole-3-acetic acid (IAA) did not affect gs at night. Interestingly, the O3-induced stomatal opening at night was limited by N treatments in August, but not limited in September. Phosphorus decreased nocturnal gs, although P did not modify the O3-induced stomatal dysfunction. The results suggest that the increased nocturnal gs may be associated with a need to improve N acquisition to cope with O3 stress.


Subject(s)
Nitrogen/physiology , Ozone/adverse effects , Phosphorus/physiology , Plant Stomata/drug effects , Populus/drug effects , Circadian Rhythm , Fertilizers/analysis , Italy , Plant Stomata/physiology , Populus/physiology
16.
Sci Total Environ ; 682: 494-504, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31129537

ABSTRACT

Mediterranean forests are among the most threatened ecosystems by the concurrent effects of climate change and atmospheric pollution. In this work we parameterized the AIRTREE multi-layer model to predict CO2, water, ozone, and fine particles exchanges between leaves and the atmosphere. AIRTREE consists of four different modules: (1) a canopy environmental module determines the leaf temperature and radiative fluxes at different levels from above to the bottom of the canopy; (2) a hydrological module predicts soil water flow and water availability to the plant's photosynthetic apparatus; (3) a photosynthesis module estimates the net photosynthesis and stomatal conductance, and (4) a deposition module estimates ozone and PM deposition sinks as a function of the resistances to gas diffusion in the atmosphere, and within the canopy and leaf boundary layer. We describe the AIRTREE model framework, accuracy and sensitivity by comparing modeling results against long-term continuous Eddy Covariance measurements of ozone, water, and CO2 fluxes in a Mediterranean Holm oak forest, and we discuss potential application of AIRTREE for ozone-risk assessment in view of availability of a large observational database from ecosystems distributed worldwide.

17.
Sci Total Environ ; 672: 296-304, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30959296

ABSTRACT

In order to understand the main driving factors of ozone (O3) deposition we tested the hypothesis that sky conditions (cloudy, partly cloudy, and clear sky) modulate O3 flux in forest ecosystems via stomatal regulation. The hypothesis is based on the fact that complex microclimate conditions under cloudy sky usually stimulate stomatal conductance. O3 fluxes were inferred from a concentration gradient in a mountainous Norway spruce forest in the Czech Republic (Central Europe) for years 2012-2016 and measured directly by eddy-covariance during the summer of 2017. Daily and seasonal O3 depositions were calculated separately for days with cloudy, partly cloudy, and clear sky conditions. The data show unequivocally that more O3 is taken up under cloudy and partially cloudy skies. Moreover, we found significant interactive effects of sky conditions and season on O3 flux. Though there are other mechanisms and pathways involved in the transport of O3 to the plant-soil system, the highest O3 deposition was associated to the highest stomatal conductance during partly cloudy and cloudy sky conditions in all seasons, while lower O3 ecosystem fluxes were observed under clear sky conditions despite the highest O3 concentrations at this time. These findings suggest that forests growing at sites where conditions are predominantly cloudy are expected to deposit higher extent of O3 than less-cloudy forests being thus more threatened by phytotoxic O3.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Forests , Ozone/analysis , Czech Republic , Picea
18.
Plant Cell Environ ; 42(6): 1939-1949, 2019 06.
Article in English | MEDLINE | ID: mdl-30767225

ABSTRACT

Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta-analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2 , and O3 ) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (-8% and -10%, respectively) and drought (-15% and -42%), and in opposite ways to elevated CO2 (-23% and +55%) and warming (+53% and -23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3 -insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4-phosphate pathway. Future results from manipulative experiments and long-term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta-analysis.


Subject(s)
Butadienes/metabolism , Climate Change , Hemiterpenes/metabolism , Monoterpenes/metabolism , Plants/metabolism , Terpenes/metabolism , Carbon Dioxide , Databases, Factual , Droughts , Global Warming , Ozone , Photosynthesis/physiology , Volatile Organic Compounds/metabolism
19.
Environ Int ; 125: 320-333, 2019 04.
Article in English | MEDLINE | ID: mdl-30739052

ABSTRACT

Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of "monitoring air pollution impacts" on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42- deposition strongly decreased in all monitoring sites in Italy over the period 1999-2017, while NO3- and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h-1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , Ecosystem , Environmental Monitoring/methods , Humans , Italy
20.
Sci Total Environ ; 656: 589-597, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30529963

ABSTRACT

Plants are exposed to a broad range of environmental stresses, such as salinity and ozone (O3), and survive due to their ability to adjust their metabolism. The aim of this study was to evaluate the physiological and biochemical adjustments adopted by pomegranate (Punica granatum L. cv. Dente di cavallo) under realistic field conditions. One-year-old saplings were exposed to O3 [two levels denoted as ambient (AO) and elevated (EO) O3 concentrations] and salinity [S (salt, 50 mM NaCl)] for three consecutive months. No salt (NS) plants received distilled water. Despite the accumulation of Na+ and Cl- in the aboveground biomass, no evidence of visible injury due to salt (e.g. tip yellow-brown lesions) was found. The maintenance of leaf water status (i.e. unchanged values of electrolytic leakage and relative water content), the significant increase of abscisic acid, proline and starch content (+98, +65 and +59% compared to AO_NS) and stomatal closure (-24%) are suggested to act as adaptive mechanisms against salt stress in AO_S plants. By contrast, EO_NS plants were unable to protect cells against the negative impact of O3, as confirmed by the reduction of the CO2 assimilation rate (-21%), accumulation of reactive oxygen species (+10 and +225% of superoxide anion and hydrogen peroxide) and malondialdehyde by-product (about 2-fold higher than AO_NS). Plants tried to preserve themselves from further oxidative damage by adopting some biochemical adjustments [i.e. increase in proline content (+41%) and induction of catalase activity (8-fold higher than in AO_NS)]. The interaction of the two stressors induced responses considerably different to those observed when each stressor was applied independently. An analysis of the antioxidant pool revealed that the biochemical adjustments adopted by P. granatum under EO_S conditions (e.g. reduction of total ascorbate; increased activities of superoxide dismutase and catalase) were not sufficient to ameliorate the O3-induced oxidative stress.


Subject(s)
Air Pollutants/adverse effects , Lythraceae/physiology , Ozone/adverse effects , Salt Stress/physiology , Adaptation, Physiological , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...