Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 313: 120064, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36055452

ABSTRACT

Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)-mediated release of PO43- from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg-1 soil) was amended with APII powder (APII-P), APII char (APII-C), and A. niger inoculum as separate doses, and combining A. niger with APII-P (APII-P + A. niger) and APII-C (APII-C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII-C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII-C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg-1 DW, remaining within the permissible limit set by WHO/FAO (2007). The APII-C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO43- from APII-C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII-C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.


Subject(s)
Soil Pollutants , Trigonella , Animals , Antioxidants , Apatites , Aspergillus , Aspergillus niger , Carbon , Humans , Pentetic Acid , Phosphates , Powders , Soil/chemistry , Soil Pollutants/analysis
2.
Environ Pollut ; 280: 116903, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33780846

ABSTRACT

Rhizosphere acidification in leguminous plants can release P from the dissolution of phosphate compounds which can reduce Pb bioavailability to them via the formation of insoluble Pb compounds in their rhizosphere. A soil polluted from Pb-acid batteries effluent (SPBE), having total Pb = 639 mg kg-1, was amended with six different rates (0, 0.5, 1, 2, 4 and 6%) of oxalic acid-activated phosphate rock (OAPR) and their effects on pH, available P and bioavailable Pb concentrations in the rhizosphere and bulk soils of mung bean plant were evaluated. Furthermore, the effects of these variant OAPR rates on Pb concentrations in plant parts, bioaccumulation factor (BAF) and translocation factor (TF) for Pb in grain and traits like productivity, the activities of antioxidant enzymes, and grain biochemistry were investigated. Results revealed that increasing rates of OAPR significantly increased pH values and available P while decreased bioavailable Pb concentrations in the rhizosphere over control. The highest dissolution of P in the rhizosphere was with 4 and 6% OAPR rates. As a result, the formation of insoluble Pb compounds affected on reduced Pb concentrations in shoots, roots, and grain in addition to lower grain BAF and TF values for Pb over control. Likewise, the highest plant productivity, improved grain biochemistry, high Ca and Mg concentrations, least oxidative stress, and enhanced soil alkaline phosphatase activity were found with 4 and 6% OAPR rates. The OAPR 4% rate is suggested for reducing grain Pb concentration, cell oxidative injury, and improving grain biochemistry in mung bean.


Subject(s)
Soil Pollutants , Vigna , Biological Availability , Lead , Oxalic Acid , Phosphates , Plant Roots/chemistry , Rhizosphere , Soil , Soil Pollutants/analysis
3.
J Environ Manage ; 284: 112047, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33571851

ABSTRACT

Soil pollution with Cd has promoted serious concerns for medicinal plant quality. Amending Cd-polluted soils with textile waste biochar (TWB) coated with natural polymers can lower Cd bioavailability in them and reduce associated environmental and human health risks. In this study, we explored the impacts of solely applied TWB, chitosan (CH), their mix (TWB + CH) and TWB coated with CH (TBC) in Cd-polluted soil on Cd distribution in moringa (Moringa oleifera L.) shoots and roots as well as plant-available Cd in soil. Moreover, amendments effects on plant growth, dietary quality, and antioxidative defense responses were also assessed. Results revealed that the addition of TWB, CH, and TWB + CH in Cd-polluted soil reduced Cd distribution in shoots (56%, 66%, and 63%), roots (41%, 48%, and 45%), and plant-available Cd in soil (38%, 52%, and 49%), compared to control. Interestingly, the TBC showed significantly the topmost response for reducing Cd concentrations in shoots, roots, and soil by 73%, 54%, and 58%, respectively, relative to control. Moreover, amending Cd-polluted soil with TWB, CH, and TWB + CH depicted significantly better effects on plant growth, dietary quality, and activities of soil enzymes but the topmost response was observed with TBC treatment. Compared with control, TBC improved plant growth parameters: shoot length (81%), root length (90%), shoot fresh weight (60%), root fresh weight (76%), shoot dry weight (75%), root dry weight (68%) contents of chlorophyll-a (42%) and chlorophyll-b (74%), and soil enzyme activities: urease (130%), catalase (138%), protease (71%), cellobiohydrolase (45%), acid phosphatase (34%), peroxidase (60%), ß-glucosidase (152%), chitinase (62%), and phosphomonoesterase (139%). Furthermore, TBC treatment arrested Cd-induced oxidative stress via escalating the activities of antioxidant enzymes as well as improved moringa dietary parameters (protein, tannins, lipids, alkaloids, saponins, terpenoids, flavonoids, and tocopherols contents). Such findings suggest that the TBC has an immense perspective to remediate Cd-polluted soils and prevent human health risks associated with Cd exposure through the diet.


Subject(s)
Chitosan , Moringa oleifera , Moringa , Soil Pollutants , Cadmium/analysis , Charcoal , Environmental Pollution , Humans , Soil , Soil Pollutants/analysis , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...