Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15615, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971803

ABSTRACT

The teaching profession highly stressful, and teachers are often faced with challenging situations. This is particularly the case in STEM (science, technology, engineering, and math) education, which is a uniquely demanding and challenging field. This study examined the role of emotional regulation (ER) skills in STEM teachers' stress, well-being, and burnout. The sample included 165 STEM teachers in middle and high schools who completed standard online questionnaires on ER, stress, well-being, and burnout. They were also asked to comment on three videos depicting authentic mathematical and pedagogical situations. The results indicated that contrary to popular belief, seniority was not linked with levels of stress, difficulties in ER, lower levels of well-being, or higher levels of burnout. A structural equation model and bootstrapping analysis showed teachers' levels of stress predicted their well-being, and this link between stress and well-being was mediated by teachers' level of difficulty in ER. The study highlights the importance of STEM teachers' well-being and suggests the need to reduce stress and burnout by providing tools for teachers to regulate their emotions in the classroom.


Subject(s)
Burnout, Professional , Emotional Regulation , School Teachers , Humans , Burnout, Professional/psychology , Male , Female , Adult , School Teachers/psychology , Surveys and Questionnaires , Technology , Middle Aged , Stress, Psychological/psychology , Engineering/education , Science/education , Mathematics/education , Emotions
2.
Food Chem Toxicol ; 168: 113342, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35963473

ABSTRACT

Cultivation of filamentous fungi to produce sustainable, nutrient rich meat replacements has recently attracted significant commercial and research interest. Here, we report evidence for the safety and nutritional value of Neurospora crassa mycoprotein, a whole mycelium food ingredient produced by fermentation and minimal downstream processing. N. crassa has a long history of human use in fermented foods and in molecular biology research. A survey of studies that used N. crassa in animal feed revealed no adverse effects to the health of the animals. Furthermore, a review of the literature found no reports of confirmed allergenicity or toxicity in humans involving N. crassa. Genomic toxigenicity analysis and in vitro testing did not identify any toxins in N. crassa mycoprotein. Two independent genomic allergenicity studies did not identify proteins that would be considered a particular risk for allergenic potential. Furthermore, nutritional analysis demonstrated that N. crassa mycoprotein is a good source of complete protein and is rich in fiber, potassium, and iron. Taken together, the presented data and the history of human use without evidence of human or animal harm indicate that foods containing N. crassa can generally be regarded as safe.


Subject(s)
Food Ingredients , Neurospora crassa , Animals , Humans , Iron/metabolism , Meat , Neurospora crassa/genetics , Neurospora crassa/metabolism , Potassium/metabolism
3.
Plant Physiol ; 189(1): 129-151, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35099559

ABSTRACT

Cuscuta species (dodders) are agriculturally destructive, parasitic angiosperms. These parasitic plants use haustoria as physiological bridges to extract nutrients and water from hosts. Cuscuta campestris has a broad host range and wide geographical distribution. While some wild tomato relatives are resistant, cultivated tomatoes are generally susceptible to C. campestris infestations. However, some specific Heinz tomato (Solanum lycopersicum) hybrid cultivars exhibit resistance to dodders in the field, but their defense mechanism was previously unknown. Here, we discovered that the stem cortex in these resistant lines responds with local lignification upon C. campestris attachment, preventing parasite entry into the host. Lignin Induction Factor 1 (LIF1, an AP2-like transcription factor), SlMYB55, and Cuscuta R-gene for Lignin-based Resistance 1, a CC-NBS-LRR (CuRLR1) are identified as factors that confer host resistance by regulating lignification. SlWRKY16 is upregulated upon C. campestris infestation and potentially negatively regulates LIF1 function. Intriguingly, CuRLR1 may play a role in signaling or function as an intracellular receptor for receiving Cuscuta signals or effectors, thereby regulating lignification-based resistance. In summary, these four regulators control the lignin-based resistance response in specific Heinz tomato cultivars, preventing C. campestris from parasitizing resistant tomatoes. This discovery provides a foundation for investigating multilayer resistance against Cuscuta species and has potential for application in other essential crops attacked by parasitic plants.


Subject(s)
Cuscuta , Solanum lycopersicum , Solanum , Cuscuta/physiology , Host Specificity , Lignin , Solanum lycopersicum/genetics
4.
Plant Physiol ; 186(4): 2093-2110, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34618110

ABSTRACT

Parasitic plants reduce crop yield worldwide. Dodder (Cuscuta campestris) is a stem parasite that attaches to its host, using haustoria to extract nutrients and water. We analyzed the transcriptome of six C. campestris tissues and identified a key gene, LATERAL ORGAN BOUNDARIES DOMAIN 25 (CcLBD25), as highly expressed in prehaustoria and haustoria. Gene coexpression networks from different tissue types and laser-capture microdissection RNA-sequencing data indicated that CcLBD25 could be essential for regulating cell wall loosening and organogenesis. We employed host-induced gene silencing by generating transgenic tomato (Solanum lycopersicum) hosts that express hairpin RNAs to target and down-regulate CcLBD25 in the parasite. Our results showed that C. campestris growing on CcLBD25 RNAi transgenic tomatoes transited to the flowering stage earlier and had reduced biomass compared with C. campestris growing on wild-type (WT) hosts, suggesting that parasites growing on transgenic plants were stressed due to insufficient nutrient acquisition. We developed an in vitro haustorium system to assay the number of prehaustoria produced on strands from C. campestris. Cuscuta campestris grown on CcLBD25 RNAi tomatoes produced fewer prehaustoria than those grown on WT tomatoes, indicating that down-regulating CcLBD25 may affect haustorium initiation. Cuscuta campestris haustoria growing on CcLBD25 RNAi tomatoes exhibited reduced pectin digestion and lacked searching hyphae, which interfered with haustorium penetration and formation of vascular connections. The results of this study elucidate the role of CcLBD25 in haustorium development and might contribute to developing parasite-resistant crops.


Subject(s)
Cuscuta/genetics , Gene Expression Regulation, Plant , Organogenesis, Plant/genetics , Plant Proteins/genetics , Cuscuta/growth & development
5.
Front Plant Sci ; 12: 764843, 2021.
Article in English | MEDLINE | ID: mdl-35222447

ABSTRACT

Parasitic weeds cause billions of dollars in agricultural losses each year worldwide. Cuscuta campestris (C. campestris), one of the most widespread and destructive parasitic plants in the United States, severely reduces yield in tomato plants. Reducing the spread of parasitic weeds requires understanding the interaction between parasites and hosts. Several studies have identified factors needed for parasitic plant germination and haustorium induction, and genes involved in host defense responses. However, knowledge of the mechanisms underlying the interactions between host and parasitic plants, specifically at the interface between the two organisms, is relatively limited. A detailed investigation of the crosstalk between the host and parasite at the tissue-specific level would enable development of effective parasite control strategies. To focus on the haustorial interface, we used laser-capture microdissection (LCM) with RNA-seq on early, intermediate and mature haustorial stages. In addition, the tomato host tissue that immediately surround the haustoria was collected to obtain tissue- resolution RNA-Seq profiles for C. campestris and tomato at the parasitism interface. After conducting RNA-Seq analysis and constructing gene coexpression networks (GCNs), we identified CcHB7, CcPMEI, and CcERF1 as putative key regulators involved in C. campestris haustorium organogenesis, and three potential regulators, SlPR1, SlCuRe1-like, and SlNLR, in tomatoes that are involved in perceiving signals from the parasite. We used host-induced gene silencing (HIGS) transgenic tomatoes to knock-down the candidate genes in C. campestris and produced CRISPR transgenic tomatoes to knock out candidate genes in tomatoes. The interactions of C. campestris with these transgenic lines were tested and compared with that in wild-type tomatoes. The results of this study reveal the tissue-resolution gene regulatory mechanisms at the parasitic plant-host interface and provide the potential of developing a parasite-resistant system in tomatoes.

6.
Front Plant Sci ; 10: 1561, 2019.
Article in English | MEDLINE | ID: mdl-31827486

ABSTRACT

Floral pigmentation is of major importance to the ornamental industry, which is constantly searching for cultivars with novel colors. Goldenrod (Solidago canadensis) has monochromatic yellow carotenoid-containing flowers that cannot be modified using classical breeding approaches due to a limited gene pool. To generate Solidago with novel colors through metabolic engineering, we first developed a procedure for its regeneration and transformation. Applicability of different cytokinins for adventitious regeneration was examined in the commercial cv. Tara, with zeatin yielding higher efficiency than 6-benzylaminopurine or thidiazuron. A comparison of regeneration of commercial cvs. Tara, Golden Glory and Ivory Glory revealed Tara to be the most potent, with an efficiency of 86% (number of shoots per 100 leaf explants). Agrobacterium-based transformation efficiency was highest for cv. Golden Glory (5 independent transgenic shoots per 100 explants) based on kanamycin selection and the GUS reporter gene. In an attempt to promote anthocyanin biosynthesis, we generated transgenic Solidago expressing snapdragon (Antirrhinum majus) Rosea1 and Delila, as well as Arabidopsis thaliana PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) transcription factors. Transgenic cv. Golden Glory expressing cauliflower mosaic virus 35S-driven PAP1 generated red flowers that accumulated delphinidin and its methylated derivatives, as compared to control yellow flowers in the GUS-expressing plants. The protocol described here allows efficient engineering of Solidago for novel coloration and improved agricultural traits.

7.
New Phytol ; 215(1): 411-422, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28262954

ABSTRACT

Emission of volatiles at advanced stages of flower development is a strategy used by plants to lure pollinators to the flower. We reveal that GA negatively regulates floral scent production in petunia. We used Agrobacterium-mediated transient expression of GA-20ox in petunia flowers and a virus-induced gene silencing approach to knock down DELLA expression, measured volatile emission, internal pool sizes and GA levels by GC-MS or LC-MS/MS, and analyzed transcript levels of scent-related phenylpropanoid-pathway genes. We show that GA has a negative effect on the concentrations of accumulated and emitted phenylpropanoid volatiles in petunia flowers; this effect is exerted through transcriptional/post-transcriptional downregulation of regulatory and biosynthetic scent-related genes. Both overexpression of GA20-ox, a GA-biosynthesis gene, and suppression of DELLA, a repressor of GA-signal transduction, corroborated GA's negative regulation of floral scent. We present a model in which GA-dependent timing of the sequential activation of different branches of the phenylpropanoid pathway during flower development may represent a link between the showy traits controlling pollinator attraction, namely color and scent.


Subject(s)
Gibberellins/pharmacology , Petunia/metabolism , Plant Growth Regulators/metabolism , Flowers/growth & development , Flowers/metabolism , Flowers/physiology , Gene Silencing , Gibberellins/metabolism , Gibberellins/physiology , Signal Transduction
8.
New Phytol ; 208(3): 708-14, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26111005

ABSTRACT

The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent.


Subject(s)
Flowers/metabolism , Petunia/metabolism , Pigmentation/physiology , Transcription Factors/metabolism , Volatile Organic Compounds/metabolism , Gene Silencing , Plant Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 111(25): E2616-21, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24927584

ABSTRACT

Despite a long-standing interest in the genetic basis of morphological diversity, the molecular mechanisms that give rise to developmental variation are incompletely understood. Here, we use comparative transcriptomics coupled with the construction of gene coexpression networks to predict a gene regulatory network (GRN) for leaf development in tomato and two related wild species with strikingly different leaf morphologies. The core network in the leaf developmental GRN contains regulators of leaf morphology that function in global cell proliferation with peripheral gene network modules (GNMs). The BLADE-ON-PETIOLE (BOP) transcription factor in one GNM controls the core network by altering effective concentration of the KNOTTED-like HOMEOBOX gene product. Comparative network analysis and experimental perturbations of BOP levels suggest that variation in BOP expression could explain the diversity in leaf complexity among these species through dynamic rewiring of interactions in the GRN. The peripheral location of the BOP-containing GNM in the leaf developmental GRN and the phenotypic mimics of evolutionary diversity caused by alteration in BOP levels identify a key role for this GNM in canalizing the leaf morphospace by modifying the maturation schedule of leaves to create morphological diversity.


Subject(s)
Gene Regulatory Networks/physiology , Plant Leaves , Plant Proteins , Solanum , Transcription Factors , Transcriptome/physiology , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum/anatomy & histology , Solanum/genetics , Solanum/metabolism , Species Specificity , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Plant Physiol ; 166(3): 1186-99, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24399359

ABSTRACT

Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds.


Subject(s)
Cuscuta/genetics , Gene Expression Regulation, Plant , Nicotiana/parasitology , Solanum lycopersicum/parasitology , Transcriptome , Base Sequence , Cluster Analysis , Cuscuta/physiology , Flowers/parasitology , Gene Library , High-Throughput Nucleotide Sequencing , Host-Parasite Interactions , Molecular Sequence Annotation , Molecular Sequence Data , Plant Stems/parasitology , Plant Weeds/genetics , Plant Weeds/physiology , RNA, Plant/chemistry , RNA, Plant/genetics , Seedlings/parasitology , Seeds/parasitology , Sequence Analysis, RNA
11.
Biotechnol Genet Eng Rev ; 29: 135-48, 2013.
Article in English | MEDLINE | ID: mdl-24568277

ABSTRACT

Artemisinin, a natural compound from Artemisia annua, is highly effective in treating drug-resistant malaria. Because chemical synthesis of this natural terpenoid is not economically feasible, its only source remains as the native plant which produces only small quantities of it, resulting in a supply that is far short of demand. Extensive efforts have been invested in metabolic engineering for the biosynthesis of artemisinin precursors in microbes. However, the production of artemisinin itself has only been achieved in plants. Since, A. annua possesses only poorly developed genetic resources for traditional breeders, molecular breeding is the best alternative. In this review, we describe the efforts taken to enhance artemisinin production in A. annua via transgenesis and advocate metabolic engineering of the complete functional artemisinin metabolic pathway in heterologous plants. In both cases, we emphasize the need to apply state-of-the-art synthetic biology approaches to ensure successful biosynthesis of the drug.


Subject(s)
Artemisinins/chemical synthesis , Malaria/drug therapy , Metabolic Engineering/methods , Plants/genetics , Artemisia annua/chemistry , Artemisinins/administration & dosage , Artemisinins/chemistry , Humans , Malaria/pathology , Synthetic Biology
12.
Plant Cell ; 24(12): 5089-105, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23275577

ABSTRACT

Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.


Subject(s)
Odorants , Petunia/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Petunia/genetics , Plant Proteins/genetics
14.
Metab Eng ; 13(5): 474-81, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21601648

ABSTRACT

The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.


Subject(s)
Arabidopsis Proteins/biosynthesis , Arabidopsis , Ligases/biosynthesis , Mitochondria/enzymology , Organisms, Genetically Modified/metabolism , Saccharomyces cerevisiae/enzymology , Terpenes/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ligases/genetics , Mitochondria/genetics , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
15.
Plant Mol Biol ; 72(3): 235-45, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19882107

ABSTRACT

Rose flowers, like flowers and fruits of many other plants, produce and emit the aromatic volatiles 2-phenylacetaldehyde (PAA) and 2-phenylethylalchohol (PEA) which have a distinctive flowery/rose-like scent. Previous studies in rose have shown that, similar to petunia flowers, PAA is formed from L: -phenylalanine via pyridoxal-5'-phosphate-dependent L: -aromatic amino acid decarboxylase. Here we demonstrate the use of a Saccharomyces cerevisiae aro10 mutant to functionally characterize a Rosa hybrida cv. Fragrance Cloud sequence (RhPAAS) homologous to petunia phenylacetaldehyde synthase (PhPAAS). Volatile headspace analysis of the aro10 knockout strain showed that it produces up to eight times less PAA and PEA than the WT. Expression of RhPAAS in aro10 complemented the yeast's mutant phenotype and elevated PAA levels, similar to petunia PhPAAS. PEA production levels were also enhanced in both aro10 and WT strains transformed with RhPAAS, implying an application for metabolic engineering of PEA biosynthesis in yeast. Characterization of spatial and temporal RhPAAS transcript accumulation in rose revealed it to be specific to floral tissues, peaking in mature flowers, i.e., coinciding with floral scent production and essentially identical to other rose scent-related genes. RhPAAS transcript, as well as PAA and PEA production in flowers, displayed a daily rhythmic behavior, reaching peak levels during the late afternoon hours. Examination of oscillation of RhPAAS transcript levels under free-running conditions suggested involvement of the endogenous clock in the regulation of RhPAAS expression in rose flowers.


Subject(s)
Plant Proteins/genetics , Rosa/genetics , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Circadian Rhythm , Gene Expression , Genetic Complementation Test , Odorants , Oils, Volatile/metabolism , Phenylethyl Alcohol/metabolism , Plant Proteins/physiology , RNA, Messenger/metabolism , Rosa/enzymology , Rosa/metabolism , Saccharomyces cerevisiae/genetics
16.
J Biotechnol ; 122(3): 307-15, 2006 Apr 10.
Article in English | MEDLINE | ID: mdl-16442655

ABSTRACT

Current means of production for plant-derived aroma compounds include chemical synthesis and extraction from plant material. Both methods are environmentally detrimental and relatively expensive: plant material is only seasonally available and only a small subset of the plant biomass produces the desired aroma compounds, while organic synthesis inevitably involves waste byproducts with a negative ecological impact. Benzenoids are a class of plant metabolites that includes a number of aroma compounds. This paper explores, for the first time, the feasibility of producing benzenoids in yeast. We present a method for the production of the phenylpropanoid methyl benzoate in Saccharomyces cerevisiae using benzoic acid as a substrate, by heterologous expression of Antirrhinum majus benzoic acid methyl transferase. Production was pH dependent with a maximal yield of approximately 50 microg of methyl benzoate per liter of culture per hour, and with linear kinetics over at least 24 h. In addition, we have analyzed two alternative expression vectors for the production of benzoic acid methyl transferase in S. cerevisiae: a constitutive triosephosphate isomerase promoter-based system was compared with a copper-inducible CUP1 promoter system. We find major differences in the amounts of methylbenzoate produced by these respective systems. Potential applications are discussed.


Subject(s)
Antirrhinum/enzymology , Benzoates/metabolism , Flavoring Agents/metabolism , Methyltransferases/genetics , Plant Proteins/genetics , Saccharomyces cerevisiae/metabolism , Benzoic Acid/metabolism , Gene Expression , Genetic Engineering , Methyltransferases/metabolism , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...