Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz. arch. biol. technol ; 57(1): 138-144, Jan.-Feb. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-702580

ABSTRACT

Two methods were used to make crude preparations of surface-active compounds (SACs) produced by Gordonia amicalis grown on the medium containing 1% diesel oil. Using a 2:1 (v/v) solution of chloroform:methanol for extraction, Type I SACs were isolated and shown to produce oil in water (O/W) emulsions. Type II SACs were isolated by precipitation with ammonium sulfate and produced predominantly water in oil emulsions (W/O). The crude Type I and II preparations were able to produce a significant reduction in the surface tension of water; however, the crude Type II preparation had 10-25 fold higher emulsification activity than the Type I preparation. Both SAC preparations were analyzed by the TLC and each produced two distinct bands with Rf 0.44 and 0.62 and Rf 0.52 and 0.62, respectively. The partially purified SACs were characterized by the ESI(+)-MS, FT-IR and NMR. In each one of these fractions, a mixture of 10 oligomers was found consisting of a series of compounds, with masses from 502 to 899, differing in molecular mass by a repeating unit of 44 Daltons. The mass spectra of these compounds did not appear to match other known biosurfactants and could represent a novel class of these compounds.

2.
Acta sci., Biol. sci ; 32(1): 63-69, jan.-mar.2010. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1460629

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) constitute a group of priority pollutants which are present at high concentrations in the soils of many industrial contaminated sites. Pollution by these compounds may stimulate growth of organisms able to live in these environments causing changes in the structure of the microbial community due to some cooperative process of metabolization of toxic compounds. A long-term PAH-contaminated soil was stored for several years and used to analyze the native microbiota regarding their ability to grow on pyrene, benzo[a]pyrene, as well as in mixtures of LMW- and HMW-PAHs. Molecular profiles of the microbial community was assessed by PCR-DGGE of 16S rRNA gene, and the number of bands observed in DGGE analyses was interpreted as dominant microbial members into the bacterial community. Results of PAH-contaminated soil microorganisms showed different profiles in the degradative dynamics when some nutrients were added. Predominant species may play a significative role while growing and surviving on PAHs, and some other metabolically active species have emerged to interact themselves in a cooperative catabolism of PAHs.


Os hidrocarbonetos poliaromáticos (HPAs) são considerados poluentes prioritários presentes em expressiva concentração no solo contaminado com derivados de petróleo. A poluição por esses compostos estimula o crescimento de microrganismos capazes de sobreviverem nestes ambientes contaminados, causando alterações na estrutura da comunidade microbiana do solo pelo processo de cooperação metabólica entre as populações. Um solo contaminado por um longo período de tempo foi coletado de uma área industrial (Port Melbourne, Austrália) e utilizado para análise da capacidade da comunidade microbiana em crescer em HPAs isolados e/ou em misturas como únicas fontes de carbono e energia. Os perfis moleculares foram obtidos por PCR-DGGE do fragmento da subunidade 16S do DNA ribossomal, sendo o número de bandas presentes nos géis de eletroforese interpretado como populações dominantes dentro da comunidade do solo. Resultados demonstraram diferentes perfis quando vitaminas e micronutrientes fizeram parte do meio líquido de crescimento da microbiota, além da presença dos HPAs. As espécies predominantes podem ter papel significativo na degradação desses compostos no solo a ser remediado, enquanto sobrevivem e interagem com outras populações por meio de mecanismos de catabolismo cooperativo.


Subject(s)
Environmental Pollution , Soil
3.
Bioresour Technol ; 100(20): 4669-75, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19477638

ABSTRACT

Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH's naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH's pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO(2) evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.


Subject(s)
Bacteria/isolation & purification , Polycyclic Aromatic Hydrocarbons/isolation & purification , Soil Microbiology , Soil Pollutants/isolation & purification , Aerobiosis , Bacteria/metabolism , Biodegradation, Environmental , Biomass , Carbon Dioxide/metabolism , Resorcinols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...