Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Environ Technol ; : 1-12, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449387

ABSTRACT

Incidents of mining dam failure have compromised the water quality, threatening the water supply. Different strategies are sought to restore the impacted area and to guarantee the water supply. One example is water treatment plants that treat high-polluted waters within the required limits for their multiple usages. The current study assesses the integration of reverse osmosis (RO) to a river water treatment plant (RWTP) installed in Brumadinho (Minas Gerais, Brazil) to treat the water from the Ferro-Carvão stream impacted by the B1 dam rupture in 2019. The RWTP started eleven months after the mining dam rupture and is equipped with eight coagulation-flocculation tanks followed by eight pressurised filters. A pilot RO plant was installed to polish the water treated by the RWTP. Water samples were collected at different points of the water treatment plant and were characterised by their physical, chemical, and biological parameters (160 in total). The results were compared with the historical data (1997-2022) to reveal the alterations in the water quality after the rupture event. The compliance with both parameters was only achieved after the RO treatment, which acted as an additional barrier to 30 contaminants. The water quality indexes (WQI) suggested that the raw surface water, even eleven months after the incident, was unfit for consumption (WQI: 133.9) whereas the reverse osmosis permeate was ranked as excellent in the rating grid (WQI: 23.7).

2.
Int J Biol Macromol ; 236: 124035, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36921831

ABSTRACT

To simultaneously form films while synthesizing solvent-free and catalyst-free bio-based polyurethanes, hexamethylene diisocyanate trimer was selected as an isocyanate group source to produce a low-viscosity reaction medium for dispersing high contents of microcrystalline cellulose (MCC, polyol) and cellulose nanocrystals (CNC). Castor oil was used as an additional polyol source. Up to 80 % of the MCC was dispersed, producing a film exhibiting the highest Tg (72 °C), tensile strength (18 MPa), and Young's modulus (522.4 MPa). 12.5 % (30 % MCC) and 7.5 % (50 % MCC) of CNC dispersed in the reaction medium formed films stiffer than their counterparts. All the films exhibited transparency and high crystallinity. The contact angle/zeta potential (ζ) indicated hydrophobic film surfaces. At pH 7.4, ζ suggested that the films interacted with physiological fluids favorably. The films were non-cytotoxic, and the composites exhibited cell growth compared with the control. The reported results, as far as it is known, are unprecedented.


Subject(s)
Nanoparticles , Polyurethanes , Polyurethanes/chemistry , Isocyanates/chemistry , Viscosity , Cellulose/chemistry , Nanoparticles/chemistry
3.
Front Psychiatry ; 13: 910410, 2022.
Article in English | MEDLINE | ID: mdl-36177216

ABSTRACT

Despite the speedy development of vaccines for COVID-19, their rollout has posed a major public health challenge, as vaccine hesitancy (VH) and refusal are high. Addressing vaccine hesitancy is a multifactorial and context-dependent challenge. This perspective focuses on VH in the world region of Latin America and the Caribbean (LAC) and includes people suffering from severe mental illness, therefore covering populations and subpopulations often neglected in scientific literature. We present an overview of VH in LAC countries, discussing its global and historical context. Vaccine uptake has shown to widely vary across different subregions of LAC. Current data points to a possible correlation between societal polarization and vaccination, especially in countries going through political crises such as Brazil, Colombia, and Venezuela. Poor accessibility remains an additional important factor decreasing vaccination rollout in LAC countries and even further, in the whole Global South. Regarding patients with severe mental illness in LAC, and worldwide, it is paramount to include them in priority groups for immunization and monitor their vaccination coverage through public health indicators.

4.
Water Sci Technol ; 85(11): 3184-3195, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35704404

ABSTRACT

Granular sludge is a promising biotechnology to treat sewage contaminated with pharmaceuticals due to its increased toxicity resistance. In this context, this study evaluated the potential of Ca2+ as a granulation precursor and how pharmaceutical compounds (loratadine, prednisone, fluconazole, fenofibrate, betamethasone, 17α-ethinyl estradiol, and ketoprofen) affect granulation. Continuous and intermittent dosages of Ca2+ in the presence and absence of pharmaceuticals were evaluated. The results showed that intermittent addition of Ca2+ reduces the time for anaerobic sludge granulation, and pharmaceuticals presence did not impair granulation. 10% of the granules presented mean diameters greater than 2.11 mm within 93 days with intermittent Ca2+ dosage in the pharmaceuticals' presence. In contrast, no granules higher than 2.0 mm were observed with no precursor addition. The pharmaceuticals' toxicity may have created a stress condition for the microbial community, contributing to more EPS production and a greater potential for granulation. It was also verified that pharmaceuticals' presence did not decrease organic matter, total alkalinity, and volatile fatty acids removals. The 16S rRNA gene analysis revealed taxa resistance to recalcitrant compounds when pharmaceuticals were added. Besides, the efficiency of a granular sludge bioreactor (EGSB) was evaluated for pharmaceuticals removal, and betamethasone, fenofibrate, and prednisone were effectively removed.


Subject(s)
Calcium , Pharmaceutical Preparations , Sewage , Waste Disposal, Fluid , Anaerobiosis , Betamethasone , Bioreactors/microbiology , Calcium/chemistry , Fenofibrate , Pharmaceutical Preparations/chemistry , Prednisone , RNA, Ribosomal, 16S , Sewage/microbiology , Waste Disposal, Fluid/methods
5.
Biomed Opt Express ; 12(7): 3902-3916, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34457388

ABSTRACT

Photobiomodulation therapy (PBMT) uses light to stimulate cells. The molecular basis of the effects of PBMT is being unveiled, but it is stated that the cytochrome-c oxidase enzyme in mitochondria, a photon acceptor of PBMT, contributes to an increase in ATP production and modulates the reduction and oxidation of electron carriers NADH and FAD. Since its effects are not fully understood, PBMT is not used on tumors. Thus, it is interesting to investigate if its effects correlate to mitochondrial metabolism and if so, how it could be linked to the optical redox ratio (ORR), defined as the ratio of FAD/(NADH + FAD) fluorescences. To that end, fibroblasts (HDFn cell line) and oral squamous cell carcinoma (SCC-25 cell line) were irradiated with a light source of 780 nm and a total dose of 5 J/cm2, and imaged by optical microscopy. PBMT down-regulated the SCC-25 ORR by 10%. Furthermore, PBMT led to an increase in ROS and ATP production in carcinoma cells after 4 h, while fibroblasts only had a modest ATP increase 6 h after irradiation. Cell lines did not show distinct cell cycle profiles, as both had an increase in G2/M cells. This study indicates that PBMT decreases the redox state of oral cancer by possibly increasing glycolysis and affects normal and tumor cells through distinct pathways. To our knowledge, this is the first study that investigated the effects of PBMT on mitochondrial metabolism from the initiation of the cascade to DNA replication. This is an essential step in the investigation of the mechanism of action of PBMT in an effort to avoid misinterpretations of a variety of combined protocols.

6.
Braz J Psychiatry ; 43(6): 605-612, 2021.
Article in English | MEDLINE | ID: mdl-33787758

ABSTRACT

OBJECTIVE: Decades of research have highlighted the involvement of the prefrontal cortex, anterior cingulated cortex, and limbic areas (amygdala) in panic disorder (PD). However, little attention has been given specifically to the inferior frontal gyrus. The current study aimed to investigate the neural substrates, including the inferior frontal gyrus, of both panic-related and negative conditions among individuals with PD and healthy controls. METHODS: We examined 13 medication-free PD patients and 14 healthy controls with functional magnetic resonance imaging (fMRI) during exposure to negative and neutral pictures and a set of specific panic-related pictures. RESULTS: Subtraction between the conditions indicated activation of the left amygdala region and the right inferior frontal gyrus in PD patients during the specific panic-related condition, whereas the left amygdalar region and left inferior frontal gyrus were activated during the negative condition in controls. CONCLUSION: These results suggest that in patients with PD, a prominent bottom-up process is involved in specific panic-related conditions, which might be associated with weak modulation of the left frontal area. These data add to our current understanding of the neural correlates of PD and can contribute to future clinical interventions targeting the functional reestablishment of these regions.


Subject(s)
Panic Disorder , Brain/diagnostic imaging , Emotions , Humans , Magnetic Resonance Imaging , Panic Disorder/diagnostic imaging , Prefrontal Cortex
7.
J Biophotonics ; 14(1): e202000128, 2021 01.
Article in English | MEDLINE | ID: mdl-32981235

ABSTRACT

One important limitation of topical photodynamic therapy (PDT) is the limited tissue penetration of precursors. Microneedles (MNs) are minimally invasive devices used to promote intradermal drug delivery. Dissolving MNs contain drug-associated to polymer blends, dissolving after insertion into skin, allowing drug release. This study comprises development and characterization of a pyramidal model of dissolving MNs (500 µm) prepared with 5% wt/wt aminolevulinic acid and 20% wt/wt Gantrez AN-139 in aqueous blend. Protoporphyrin IX formation and distribution were evaluated in tumor mice model by using fluorescence widefield imaging, spectroscopy, and confocal microscopy. MNs demonstrated excellent mechanical resistance penetrating about 250 µm with minor size alteration in vitro, and fluorescence intensity was 5-times higher at 0.5 mm on average compared to cream in vivo (being 10 ± 5 a.u. for MNs and 2.4 ± 0.8 a.u. for cream). Dissolving MNs have overcome topical cream application, being extremely promising especially for thicker skin lesions treatment using PDT.


Subject(s)
Aminolevulinic Acid , Photochemotherapy , Administration, Cutaneous , Aminolevulinic Acid/pharmacology , Animals , Mice , Photosensitizing Agents/pharmacology , Protoporphyrins , Skin
8.
Environ Sci Pollut Res Int ; 28(19): 23778-23790, 2021 May.
Article in English | MEDLINE | ID: mdl-33128710

ABSTRACT

Conventional sewage treatment systems are generally not designed to remove micropollutants, requiring the development of new technologies, such as the combination of biological processes with advanced oxidative processes. The configuration of an anaerobic expanded granular sludge bed (EGSB) reactor stands out for its use of granular biomass and high sludge bed expansion. Ozonation is an advanced oxidative process that stands out as one of the most promising technologies for the degradation of micropollutants. Thus, the present work aimed to evaluate the removal of drugs through the application of ozonation as a polishing process for the effluent of an EGSB reactor that was fed with synthetic sewage. Ozonation was shown to be efficient in the degradation of these compounds, reaching removals above 90%. It was found that the degradation profile of each drug varied according to its chemical structure since some drugs are more susceptible to oxidation than others and since the concentrations of pharmaceuticals are also related to their removal. Moreover, the assessment of risks to the environment and human health confirmed the need to assess the best scenario for risk reduction considering all drugs, since even with almost complete removal of some compounds, the effluents still showed toxicity. Thus, the high removal efficiencies found for the evaluated micropollutants showed that this technique has the potential to be used to improve the quality of biological reactor effluents or even to be combined in effluent reuse systems.


Subject(s)
Ozone , Sewage , Anaerobiosis , Bioreactors , Humans , Oxidation-Reduction , Waste Disposal, Fluid
9.
Psychiatr Danub ; 32(Suppl 1): 139-141, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32890377

ABSTRACT

In this brief report we present the case of a 53 year old man with a very debilitating Generalized Anxiety Disorder successfully treated with tranylcypromine. After several failed treatment attempts following international guidelines recommendations over the course of one year and a half, tranylcypromine was prescribed which led to effective and sustained remission of anxiety symptoms for this patient. We also briefly explore treatment options for resistant cases of generalized anxiety disorder, given the major negative impacts of untreated GAD in a person's daily functioning and quality of life.


Subject(s)
Anxiety Disorders , Monoamine Oxidase Inhibitors , Quality of Life , Anxiety , Anxiety Disorders/drug therapy , Drug Therapy, Combination , Humans , Male , Middle Aged , Monoamine Oxidase Inhibitors/therapeutic use
10.
Environ Technol ; 40(8): 988-996, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29210595

ABSTRACT

An expanded granular sludge bed reactor was evaluated for the anaerobic digestion of commercial laundry wastewater and domestic sewage focused on the removal of linear alkylbenzene sulfonate (LAS). The reactor was operated in three stages, all under mesophilic conditions and with a hydraulic retention time of 36 h. At stage I, the laundry wastewater was diluted with tap water (influent: 15.3 ± 4.9 mg LAS/L); at stage II, 50% of the feed volume was domestic sewage and 50% was a mixture of tap water and laundry wastewater (influent: 15.8 ± 4.9 mg LAS/L); and at stage III, only domestic sewage was used as a diluent of the laundry wastewater (influent: 24.1 ± 4.1 mg LAS/L). Due to the addition of domestic sewage the organic compounds content and LAS in the influent increased. Under such conditions, it was observed that LAS removal rate decreased from 77.2 ± 14.9% (stage I) to 55.3 ± 18.4% (stage III). Statistical tests indicated that the decrease of the LAS removal rate was significant and indicated a correlation between the removal of LAS and specific organic loading rate. The analysis of 16S rRNA gene sequencing revealed genera similar to Geobacter, Desulfovibrio, Syntrophomonas, Syntrophus, Desulfobulbus, Desulfomonile, and Desulfomicrobium, which were related to the degradation of LAS.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors , RNA, Ribosomal, 16S , Surface-Active Agents
11.
Front Microbiol ; 10: 2995, 2019.
Article in English | MEDLINE | ID: mdl-32010081

ABSTRACT

Graphene oxide (GO) with their interesting properties including thermal and electrical conductivity and antibacterial characteristics have many promising applications in medicine. The prevalence of resistant bacteria is considered a public health problem worldwide, herein, GO has been used as a broad spectrum selective antibacterial agent based on the photothermal therapy (PTT)/photodynamic therapy (PDT) effect. The preparation, characterization, determination of photophysical properties of two different sizes of GO is described. In vitro light dose and concentration-dependent studies were performed using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria based on the PTT/PDT effect used ultra-low doses (65 mW cm-2) of 630 nm light, to achieve efficient bacterial decontamination. The results show that GO and nanographene oxide (nGO) can sensitize the formation of 1O2 and allow a temperature rise of 55°C to 60°C together nGO and GO to exert combined PTT/PDT effect in the disinfection of gram-positive S. aureus and gram-negative E. coli bacteria. A complete elimination of S. aureus and E. coli bacteria based on GO and nGO is obtained by using a dose of 43-47 J cm-2 for high concentration used in this study, and a dose of around 70 J cm-2 for low dose of GO and nGO. The presence of high concentrations of GO allows the bacterial population of S. aureus and E. coli to be more sensitive to the use of PDT/PTT and the efficiency of S. aureus and E. coli bacteria disinfection in the presence of GO is similar to that of nGO. In human neonatal dermal fibroblast, HDFs, no significant alteration to cell viability was promoted by GO, but in nGO is observed a mild damage in the HDFs cells independent of nGO concentration and light exposure. The unique properties of GO and nGO may be useful for the clinical treatment of disinfection of broad-spectrum antimicrobials. The antibacterial results of PTT and PDT using GO in gram-positive and gram-negative bacteria, using low dose light, allow us to conclude that GO and nGO can be used in dermatologic infections, since the effect on human dermal fibroblasts of this treatment is low compared to the antibacterial effect.

SELECTION OF CITATIONS
SEARCH DETAIL