Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Psychiatry ; 6: 157, 2015.
Article in English | MEDLINE | ID: mdl-26635635

ABSTRACT

Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine (Pilo) model of status epilepticus to induce mossy fiber sprouting, and cycloheximide (CHX) to block this sprouting, we evaluated at the ultrastructural level the number and type of asymmetric synaptic contacts in the molecular layer of the dentate gyrus. As expected, whereas Pilo-treated rats had dense silver grain deposits in the inner molecular layer (IML) (reflecting mossy fiber sprouting), pilocarpine + cycloheximide (CHX + Pilo)-treated animals did not differ from controls. Both groups of treated rats (Pilo group and CHX + Pilo group) had reduced density of asymmetric synaptic profiles (putative excitatory synaptic contacts), which was greater for CHX-treated animals. For both treated groups, the loss of excitatory synaptic contacts was even greater in the outer molecular layer than in the best-studied IML (in which mossy fiber sprouting occurs). These results indicate that mossy fiber sprouting tends to replace lost synaptic contacts rather than increase the absolute number of contacts. We speculate that the overall result is more consistent with restored rather than with increased excitability.

2.
Protist ; 158(2): 147-57, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17185034

ABSTRACT

The replication and segregation of organelles producing two identical daughter cells must be precisely controlled during the cell cycle progression of eukaryotes. In kinetoplastid flagellated protozoa, this includes the duplication of the single mitochondrion containing a network of DNA, known as the kinetoplast, and a flagellum that grows from a cytoplasmic basal body through the flagellar pocket compartment before emerging from the cell. Here, we show the morphological events and the timing of these events during the cell cycle of the epimastigote form of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease. DNA staining, flagellum labeling, bromodeoxyuridine incorporation, and ultra-thin serial sections show that nuclear replication takes 10% of the whole cell cycle time. In the middle of the G2 stage, the new flagellum emerges from the flagellar pocket and grows unattached to the cell body. While the new flagellum is still short, the kinetoplast segregates and mitosis occurs. The new flagellum reaches its final size during cytokinesis when a new cell body is formed. These precisely coordinated cell cycle events conserve the epimastigote morphology with a single nucleus, a single kinetoplast, and a single flagellum status of the interphasic cell.


Subject(s)
Cell Cycle/physiology , DNA Replication/physiology , Mitosis , Trypanosoma cruzi/cytology , Animals , Cell Nucleus/physiology , DNA, Kinetoplast/analysis , DNA, Kinetoplast/genetics , Flagella , Trypanosoma cruzi/physiology
3.
Biochim Biophys Acta ; 1658(3): 187-94, 2004 Oct 04.
Article in English | MEDLINE | ID: mdl-15450956

ABSTRACT

We studied changes in mitochondrial morphology and function in the smooth muscle of rat colon. Under confocal microscopy, tissues loaded with potentiometric dye displayed rapid and spontaneous depolarization. Cyclosporin A (CsA), inhibitor of the permeability transition pore (PTP), caused an increase in mitochondrial membrane potential (DeltaPsim) in tissues from adult young animals. In aged rats these changes were not observed. This suggests that physiological activation of PTP in aged rats is reduced. Electron microscopy showed alterations of the mitochondrial ultrastructure in tissues from aged rats involving a decreased definition of the cristae and fragmentation of the mitochondrial membranes. We also detected an increase in apoptotic cells in the smooth muscle from aged animals. Our results show that the aging process changes PTP activity, the ability to maintain DeltaPsim and mitochondrial morphology. It is suggested that these can be associated with mitochondrial damage and cell death.


Subject(s)
Aging/physiology , Apoptosis , Mitochondria/ultrastructure , Muscle, Smooth/cytology , Animals , Female , In Situ Nick-End Labeling , Microscopy, Electron , Muscle, Smooth/ultrastructure , Rats , Rats, Wistar
4.
J Exp Zool A Comp Exp Biol ; 301(3): 249-60, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14981784

ABSTRACT

Spermatogenesis and steroidogenesis undergo seasonal variations during the reproductive cycle in amphibians. Testicular morphological and morphometric seasonal variations as well as interstitial lipidic inclusions and intralobular glycoconjugates were evaluated during seasonal cycle of Rana catesbeiana. Testes of frogs collected during the annual seasons were weighed for calculation of GSI (Gonadosomatic index). Seminiferous lobule diameters (DSL) and volume densities of seminiferous lobules (VvSL), excretory ducts (VvED), and interstitial tissue (VvIT) were analyzed. Semithin sections were submitted to Periodic Acid-Schiff (PAS) and Alcian Blue (AB) methods for detection of glycoconjugates, while lipidic inclusions were detected by Sudan Black B. GSI showed no significant variations during the year. Since VvED and VvIT increased significantly during summer and were inversely proportional to VvSL, a compensatory effect between the testicular compartments may be related to the maintenance of GSI. During autumn/winter, larger lobular diameters were observed in comparison to spring/summer when spermiogenesis and spermiation were commonly observed. The increased VvIT and the numerous lipidic inclusions in the interstitial cells during summer suggest a relationship between spermiogenesis and steroidogenesis. Besides the structural stability variations occurring in the IT and SL, a possible paracrine interaction between ED and IT should be also involved in the IT development during summer. The presence of PAS and AB-positive globular structures were observed in the seminiferous lobules and excretory ducts. These structures containing acid glycoconjugates appear to be Sertoli cell apical portions, which are accumulated in the lumen of the seminiferous lobules mainly during spermiation.


Subject(s)
Glycoconjugates/metabolism , Rana catesbeiana/anatomy & histology , Reproduction/physiology , Seasons , Testis/anatomy & histology , Alcian Blue , Analysis of Variance , Animals , Azo Compounds , Body Weights and Measures , Histological Techniques , Male , Naphthalenes , Periodic Acid-Schiff Reaction , Rana catesbeiana/physiology
5.
Parasitol Res ; 92(3): 246-54, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14714177

ABSTRACT

The present work showed the presence of a megasome in Leishmania (Leishmania) chagasi amastigotes. Transmission electron microscopy analysis of ultrathin serial sections and three-dimensional reconstruction allowed visualization of large structures in amastigote forms of L. (L.) chagasi and a multivesicular tubule-lysosome structure in metacyclic promastigotes. Morphometric data showed that the relative volume occupied by the megasome and the multivesicular tubule (MVT)-lysosome structures was about 5% and 3.2%, respectively, in amastigotes and promastigotes of L. (L.) chagasi. Further characterization of the megasome in L. (L.) chagasi amastigotes was carried out by immunolabeling of cysteine proteinase, whereas the lysosomal content of amastigotes and promastigotes was confirmed by arylsulfatase cytochemistry.


Subject(s)
Leishmania/cytology , Animals , Flagella/ultrastructure , Leishmania/ultrastructure , Lysosomes/ultrastructure , Microscopy, Electron , Microscopy, Immunoelectron , Mitochondria/ultrastructure , Organelles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL