Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8200, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081826

ABSTRACT

UPF1-like helicases play roles in telomeric heterochromatin formation and X-chromosome inactivation, and also in monogenic variant surface glycoprotein (VSG) expression via VSG exclusion-factor-2 (VEX2), a UPF1-related protein in the African trypanosome. We show that VEX2 associates with chromatin specifically at the single active VSG expression site on chromosome 6, forming an allele-selective connection, via VEX1, to the trans-splicing locus on chromosome 9, physically bridging two chromosomes and the VSG transcription and splicing compartments. We further show that the VEX-complex is multimeric and self-regulates turnover to tightly control its abundance. Using single cell transcriptomics following VEX2-depletion, we observed simultaneous derepression of many other telomeric VSGs and multi-allelic VSG expression in individual cells. Thus, an allele-selective, inter-chromosomal, and self-limiting VEX1-2 bridge supports monogenic VSG expression and multi-allelic VSG exclusion.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Alleles , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism , Trypanosoma/metabolism , Membrane Glycoproteins/genetics , Telomere/metabolism
2.
Parasitology ; 148(10): 1237-1253, 2021 09.
Article in English | MEDLINE | ID: mdl-33407981

ABSTRACT

African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.


Subject(s)
Antigenic Variation/genetics , Cell Nucleus/genetics , Gene Expression Regulation , Trypanosoma brucei brucei/physiology , Trypanosoma brucei brucei/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...