Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Clin Med ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959208

ABSTRACT

This study focuses on the use of thiopurines for treating inflammatory bowel diseases (IBD). These drugs undergo enzymatic changes within the body, resulting in active and inactive metabolites that influence their therapeutic effects. The research examines the role of genetic polymorphisms in the enzyme thiopurine S-methyltransferase (TPMT) in predicting the therapeutic response and adverse effects of thiopurine treatment. The TPMT genotype variations impact the individual responses to thiopurines. Patients with reduced TPMT activity are more susceptible to adverse reactions (AEs), such leukopenia, hepatotoxicity, pancreatitis, and nausea, which are common adverse effects of thiopurine therapy. The therapeutic monitoring of the metabolites 6-thioguanine nucleotides (6-TGN) and 6-methyl mercaptopurine (6-MMP) is proposed to optimize treatment and minimize AEs. Patients with higher 6-TGN levels tend to have better clinical responses, while elevated 6-MMP levels are linked to hepatotoxicity. Genotyping for TPMT before or during treatment initiation is suggested to tailor dosing strategies and enhance treatment efficacy while reducing the risk of myelosuppression. In conclusion, this study highlights the importance of considering genetic variations and metabolite levels in optimizing thiopurine therapy for IBD patients, focusing on balance therapeutic efficacy with the prevention of adverse effects and contributing to personalized treatment and better patient outcomes.

2.
Inflamm Res ; 71(4): 439-448, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35274151

ABSTRACT

OBJECTIVE: This study was conducted to investigate the effects of the synthetic PAR2 agonist peptide (PAR2-AP) SLIGRL-NH2 on LPS-induced inflammatory mechanisms in peritoneal macrophages. METHODS: Peritoneal macrophages obtained from C57BL/6 mice were incubated with PAR2-AP and/or LPS, and the phagocytosis of zymosan fluorescein isothiocyanate (FITC) particles; nitric oxide (NO), reactive oxygen species (ROS), and cytokine production; and inducible NO synthase (iNOS) expression in macrophages co-cultured with PAR-2-AP/LPS were evaluated. RESULTS: Co-incubation of macrophages with PAR2AP (30 µM)/LPS (100 ng/mL) enhanced LPS-induced phagocytosis; production of NO, ROS, and the pro-inflammatory cytokines interleukin (IL)-1ß, tumour necrosis factor (TNF)-α, IL-6, and C-C motif chemokine ligand (CCL)2; and iNOS expression and impaired the release of the anti-inflammatory cytokine IL-10 after 4 h of co-stimulation. In addition, PAR2AP increased the LPS-induced translocation of the p65 subunit of the pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and reduced the expression of inhibitor of NF-κB. CONCLUSION: This study provides evidence of a role for PAR2 in macrophage response triggered by LPS enhancing the phagocytic activity and NO, ROS, and cytokine production, resulting in the initial and adequate macrophage response required for their innate response mechanisms.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism , Receptor, PAR-2/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Chem Biodivers ; 18(11): e2100439, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34665914

ABSTRACT

In this work, two synthetic aurones revealed moderate schistosomicidal potential in in vitro and in vivo assays. Aurones (1) and (2) promoted changes in tegument integrity and motor activity, leading to death of adult Schistosoma mansoni worms in in vitro assays. When administered orally (two doses of 50 mg/kg) in experimentally infected animals, synthetic aurones (1) and (2) promoted reductions of 56.20 % and 57.61 % of the parasite load and stimulated the displacement towards the liver of the remaining adult worms. The oogram analysis revealed that the treatment with both aurones interferes with the egg development kinetics in the intestinal tissue. Seeking an action target for compounds (1) and (2), the connection with NTPDases enzymes, recognized as important therapeutic targets for S. mansoni, was evaluated. Molecular docking studies have shown promising results. The dataset reveals the anthelmintic character of these compounds, which can be used in the development of new therapies for schistosomiasis.


Subject(s)
Anthelmintics/pharmacology , Benzofurans/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Administration, Oral , Animals , Anthelmintics/administration & dosage , Anthelmintics/chemistry , Benzofurans/administration & dosage , Benzofurans/chemistry , Dose-Response Relationship, Drug , Female , Mice , Molecular Structure
4.
Chem Biodivers ; 18(11): e2100604, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34608744

ABSTRACT

Schistosomiasis, a neglected tropical disease caused by Schistosoma species, harms over 250 million people in several countries. The treatment is achieved with only one drug, praziquantel. Cardamonin, a natural chalcone with in vitro schistosomicidal activity, has not been in vivo evaluated against Schistosoma. In this work, we evaluated the in vivo schistosomicidal activities of cardamonin against Schistosoma mansoni worms and conducted enzymatic apyrase inhibition assay, as well as molecular docking analysis of cardamonin against potato apyrase, S. mansoni NTPDase 1 and S. mansoni NTPDase 2. In a mouse model of schistosomiasis, the oral treatment with cardamonin (400 mg/kg) showed efficacy against S. mansoni, decreasing the total worm load in 46.8 % and reducing in 54.5 % the number of eggs in mice. Cardamonin achieved a significant inhibition of the apyrase activity and the three-dimensional structure of the potato apyrase, obtained by homology modeling, showed that cardamonin may interact mainly through hydrogen bonds. Molecular docking studies corroborate with the action of cardamonin in binding and inhibiting both potato apyrase and S. mansoni NTPDases.


Subject(s)
Apyrase/antagonists & inhibitors , Chalcones/pharmacology , Enzyme Inhibitors/pharmacology , Piperaceae/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Animals , Apyrase/metabolism , Biomphalaria , Chalcones/chemistry , Chalcones/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Female , Mice , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solanum tuberosum/enzymology
5.
Nanomedicine (Lond) ; 16(19): 1641-1655, 2021 08.
Article in English | MEDLINE | ID: mdl-34256609

ABSTRACT

Aim: To isolate licochalcone A (LicoA) from licorice, prepare LicoA-loaded solid lipid nanoparticles (L-SLNs) and evaluate the L-SLNs in vitro and in vivo against Schistosoma mansoni. Materials & methods: LicoA was obtained by chromatographic fractionation and encapsulated in SLNs by a modified high shear homogenization method. Results: L-SLNs showed high encapsulation efficiency, with satisfactory particle size, polydispersity index and Zeta potential. Transmission electron microscopy revealed that L-SLNs were rounded and homogenously distributed. Toxicity studies revealed that SLNs decreased the hemolytic and cytotoxic properties of LicoA. Treatment with L-SLNs showed in vivo efficacy against S. mansoni. Conclusion: L-SLNs are efficient in reducing worm burden and SLNs may be a promising delivery system for LicoA to treat S. mansoni infections.


Subject(s)
Chalcones , Nanoparticles , Drug Carriers , Lipids , Particle Size
6.
Parasitol Int ; 83: 102317, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33676013

ABSTRACT

Granulomas are inflammatory tissue responses directed to a set of antigens. Trapped Schistosoma mansoni eggs promote productive granulomas in the tissues, and they are the main damage caused by schistosomiasis. Some S. mansoni antigenic proteins may have a direct involvement in the resolution of the granulomatous response. The ATP diphosphohydrolases isoforms of this parasite are immunogenic, expressed in all phases of the parasite life cycle and secreted by eggs and adult worms. Potato apyrase is a vegetable protein that cross-reactive with parasite ATP diphosphohydrolases isoforms. In this study, the vegetable protein was purified, before being inoculated in C57BL/6 mice that were later infected with cercariae. Sixty days after infection, adult worms were recovered, antibodies and cytokines were measured, and morphological granuloma alterations evaluated. Immunization of the animals induced significant levels of IgG and IgG1 antibodies and IFN-γ, IL-10 and IL-5 cytokines, but not IL-13, suggesting that potato apyrase is an immunoregulatory protein. Supporting this hypothesis, it was found that liver damage associated with schistosomiasis was mitigated, reducing the size of the areas affected by granuloma to 35% and increasing the presence of multinucleated giant cells in this environment. In conclusion, potato apyrase was found to be effective immunomodulatory antigen for murine schistosomiasis.


Subject(s)
Apyrase/chemistry , Giant Cells/drug effects , Rodent Diseases/parasitology , Schistosoma mansoni/physiology , Schistosomiasis mansoni/veterinary , Solanum tuberosum/chemistry , Animals , Female , Mice , Mice, Inbred C57BL , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/parasitology , Solanum tuberosum/enzymology
7.
Article in English | MEDLINE | ID: mdl-33062001

ABSTRACT

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is a neglected tropical disease that afflicts over 230 million people worldwide. Currently, treatment is achieved with only one drug, praziquantel (PZQ). In this regard, the roots of Solidago microglossa (Asteraceae) and Aristolochia cymbifera (Aristolochiaceae) are popularly used as anthelmintic. Despite their medicinal use against helminthiasis, such as schistosomiasis, A. cymbifera, and S. microglossa have not been evaluated against S. mansoni. Then, in this work, the in vitro antischistosomal activity of the crude extracts of A. cymbifera (Ac) and S. microglossa (Sm) and their isolated compounds were investigated against S. mansoni adult worms. Sm (200 µg/mL) and Ac (100-200 µg/mL) were lethal to all male and female worms at the 24 h incubation. In addition, Sm (10-50 µg/mL) and Ac (10 µg/mL) caused significant reduction in the parasite's movements, showing no significant cytotoxicity to Vero cells at the same range of schistosomicidal concentrations. Confocal laser scanning microscopy revealed that Sm and Ac caused tegumental damages and reduced the numbers of tubercles of male schistosomes. Chromatographic fractionation of Sm leads to isolation of bauerenol, α-amirin, and spinasterol, while populifolic acid, cubebin, 2-oxopopulifolic acid methyl ester, and 2-oxopopulifolic acid were isolated from Ac. At concentrations of 25-100 µM, bauerenol, α-amirin, spinasterol, populifolic acid, and cubebin showed significant impact on motor activity of S. mansoni. 2-oxopopulifolic acid methyl ester and 2-oxopopulifolic acid caused 100% mortality and decreased the motor activity of adult schistosomes at 100 µM. This study has reported, for the first time, the in vitro antischistosomal effects of S. microglossa and A. cymbifera extracts, also showing promising compounds against adult schistosomes.

8.
Colloids Surf B Biointerfaces ; 196: 111371, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32980571

ABSTRACT

The purpose of this study was to develop tea tree oil (TTO)-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules (NC-TTO-Ch) aiming the topical acne treatment. TTO was analyzed by gas chromatography-mass spectrometry, and nanocapsules were characterized regarding mean particle size (Z-average), polydispersity index (PdI), zeta potential (ZP), pH, entrapment efficiency (EE), morphology by Atomic Force Microscopy (AFM), and anti-Cutibacterium acnes activity. The main constituents of TTO were terpinen-4-ol (37.11 %), γ-terpinene (16.32 %), α-terpinene (8.19 %), ρ-cimene (6.56 %), and α-terpineol (6.07 %). NC-TTO-Ch presented Z-average of 268.0 ± 3.8 nm and monodisperse size distribution (PdI < 0.3). After coating the nanocapsules with chitosan, we observed an inversion in ZP to a positive value (+31.0 ± 1.8 mV). This finding may indicate the presence of chitosan on the nanocapsules' surface, which was corroborated by the AFM images. In addition, NC-TTO-Ch showed a slightly acidic pH (∼5.0), compatible with topical application. The EE, based on Terpinen-4-ol concentration, was approximately 95 %. This data suggests the nanocapsules' ability to reduce the TTO volatilization. Furthermore, NC-TTO-Ch showed significant anti-C. acnes activity, with a 4× reduction in the minimum inhibitory concentration, compared to TTO and a decrease in C. acnes cell viability, with an increase in the percentage of dead cells (17 %) compared to growth control (6.6 %) and TTO (9.7 %). Therefore, chitosan-poly(ε-caprolactone) core-shell nanocapsules are a promising tool for TTO delivery, aiming at the activity against C. acnes for the topical acne treatment.


Subject(s)
Chitosan , Nanocapsules , Tea Tree Oil , Polyesters , Tea Tree Oil/pharmacology
9.
Int J Biol Macromol ; 164: 687-693, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32663559

ABSTRACT

NTPDases (EC 3.6.1.5) are enzymes belonging to a protein family which have as a common feature the ability to hydrolyze di- and triphosphate nucleotides (ADP and ATP) to monophosphate nucleosides (AMP) in the presence of Ca+2 and Mg+. The potato apyrase has been the first protein of the NTPDase family to be purified. In mammals, these enzymes are involved in physiologic and sick processes as thromboregulation, inflammatory and immunologic responses. In this study, we investigated the in vitro potential of synthetic chalcones on the inhibition of potato apyrase purified from Solanum tuberosum. The protein was purified with high grade purity and its identity was confirmed by electrophoresis, western blot, and LC-MS/MS. Five out of the eight chemically synthetized chalcones analyzed in this study showed significant inhibition of the apyrase activity. The compound with the best rate of inhibition of ATP hydrolytic activity was able to promote 54% inhibition with a concentration of 3.125 µM. Ticlopidine, used as an inhibition drug control, was able to promote inhibitions around 50% of the activity (IC50 = 2.167 µM). Our results with the potato apyrase inhibition with the synthetic chalcones suggest that these compounds may use as potential lead candidates for the treatment of some diseases associated with nucleotides.


Subject(s)
Adenosine Triphosphate/chemistry , Apyrase/antagonists & inhibitors , Chalcones/chemistry , Adenosine Triphosphate/genetics , Amino Acid Sequence/genetics , Antigens, CD/chemistry , Antigens, CD/genetics , Apyrase/chemistry , Apyrase/genetics , Biotechnology , Chalcones/pharmacology , Chromatography, Liquid , Humans , Hydrolysis/drug effects , Protein Engineering , Solanum tuberosum/enzymology , Tandem Mass Spectrometry
10.
Article in English | MEDLINE | ID: mdl-31827562

ABSTRACT

Schistosomiasis is a neglected tropical disease that affects million people worldwide, mostly in developing countries. Ruta graveolens (Rutaceae) is a plant used in folk medicine to treat several diseases, including parasitic infections. In this study, we reported the in vitro schistosomicidal activity of the R. graveolens extract (Rg) and its active fraction (Rg-FAE). Also, the characterization of Rg-FAE by UPLC-ESI-QTOF-MS analysis and its in vitro antileishmanial activity against Leishmania braziliensis were also performed. In vitro schistosomicidal assays were assessed against adult worms of S. mansoni, while cell viability against peritoneal macrophages was measured by MTT assay. Rg (100 µg/mL) exhibited noticeable schistosomicidal activity, causing 100% mortality and decreasing motor activity of all adult male and female schistosomes, but with low activity against L. braziliensis. After chromatographic fractionation of Rg, fraction Rg-FAE was obtained, showing high activity against adult schistosomes. UPLC-ESI-QTOF-MS analysis of Rg-FAE revealed the presence of eleven alkaloids and one furanocoumarin. No significant antileishmanial activity was found for Rg, while Rg-FAE exhibited activity against L. braziliensis promastigotes. We demonstrated, for the first time, that the R. graveolens extract (Rg) and its alkaloid-rich fraction (Rg-FAE) are active against adult worms of S. mansoni, with no significant cytotoxicity on macrophages. Our findings open the route to further antiparasitic studies with the active fraction of R. graveolens and its identified compounds, especially alkaloids.

11.
J Pharm Pharmacol ; 71(12): 1784-1791, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31579947

ABSTRACT

The alkylaminoalkanethiosulfuric acids (AAATs) are amphipathic compounds effective against experimental schistosomiasis, of low toxicity, elevated bioavailability after a single oral dose and prompt tissue absorption. OBJECTIVES: To explore the in-vitro antileishmanial potential of AAATs using five compounds of this series against Leishmania (Viannia) braziliensis. METHODS: Their effects on promastigotes and axenic amastigotes, and cytotoxicity to macrophages were tested by the MTT method, and on Leishmania-infected macrophages by Giemsa stain. Effects on the mitochondrial membrane potential of promastigotes and axenic amastigotes and DNA of intracellular amastigotes were tested using JC-1 and TUNEL assays, respectively. KEY FINDINGS: The 2-(isopropylamino)-1-octanethiosulfuric acid (I) and 2-(sec-butylamino)-1-octanethiosulfuric acid (II) exhibit activity against both promastigotes and intracellular amastigotes (IC50 25-35 µm), being more toxic to intracellular parasites than to the host cell. Compound I induced a loss of viability of axenic amastigotes, significantly reduced (30%) the mitochondrial membrane potential of both promastigotes and axenic amastigotes and promoted selective DNA fragmentation of the nucleus and kinetoplast of intracellular amastigotes. CONCLUSIONS: In this previously unpublished study of trypanosomatids, it is shown that AAATs could also exhibit selective antileishmanial activity, a new possibility to be investigated in oral treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania braziliensis/isolation & purification , Leishmaniasis/drug therapy , Sulfuric Acids/pharmacology , Administration, Oral , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Inhibitory Concentration 50 , Leishmania braziliensis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Structure-Activity Relationship , Sulfuric Acids/administration & dosage , Sulfuric Acids/chemistry
12.
Vet Parasitol ; 271: 38-44, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31303201

ABSTRACT

A nucleoside triphosphate diphosphohydrolase-1 (NTPDase 1) was identified on the surface, flagellum and kinetoplast from L. infantum promastigotes by immunocytochemistry and confocal laser scanning microscopy, using immune sera that recognized specifically the B domain of NTPDase 1 and produced against synthetic peptides (LbB1LJ and LbB2LJ) derived from this domain. The polyclonal antibodies had effective antileishmanial effect, reducing significantly in vitro promastigotes growth (21-25%), an antiproliferative effect also demonstrated by immune sera produced against recombinant r-pot B domain, and two other synthetic peptides (potB1LJ and potB2LJ). In addition, using these biomolecules in ELISA technique, IgG1 and IgG2 subclasses reactivities of either healthy dogs or infected by L. infantum and classified clinically as asymptomatic, oligosymptomatic and symptomatic were tested. Analysis of distinct IgG1 and IgG2 seropositivities patterns suggested antibody subclasses binding epitopes along B domain for protection against infection, indicating this domain as a new tool for prophylactic and immunotherapeutic investigations.


Subject(s)
Antibodies, Protozoan/immunology , Dog Diseases/immunology , Immunoglobulin G/immunology , Leishmania infantum/enzymology , Leishmania infantum/immunology , Leishmaniasis, Visceral/veterinary , Nucleoside-Triphosphatase/immunology , Animals , Antibodies, Protozoan/metabolism , Dog Diseases/parasitology , Dogs , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Protein Domains/immunology
13.
Curr Protein Pept Sci ; 20(9): 873-884, 2019.
Article in English | MEDLINE | ID: mdl-31272352

ABSTRACT

ATP-diphosphohydrolases (EC 3.6.1.5), also known as ATPDases, NTPases, NTPDases, EATPases or apyrases, are enzymes that hydrolyze a variety of nucleoside tri- and diphosphates to their respective nucleosides, being their activities dependent on the presence of divalent cations, such as calcium and magnesium. Recently, ATP-diphosphohydrolases were identified on the surface of several parasites, such as Trypanosoma sp, Leishmania sp and Schistosoma sp. In parasites, the activity of ATPdiphosphohydrolases has been associated with the purine recuperation and/or as a protective mechanism against the host organism under conditions that involve ATP or ADP, such as immune responses and platelet activation. These proteins have been suggested as possible targets for the development of new antiparasitic drugs. In this review, we will comprehensively address the main aspects of the location and function of ATP-diphosphohydrolase in parasites. Also, we performed a detailed research in scientific database of recent developments in new natural and synthetic inhibitors of the ATPdiphosphohydrolases in parasites.


Subject(s)
Adenosine Triphosphate/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Parasites/metabolism , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Apyrase/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Parasites/drug effects
14.
Rev Soc Bras Med Trop ; 52: e20180139, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30942255

ABSTRACT

INTRODUCTION: High percentages of structural identity and cross-immunoreactivity have been reported between potato apyrase and Schistosoma mansoni ATP diphosphohydrolase (SmATPDases) isoforms, showing the existence of particular epitopes shared between these proteins. METHODS: Potato apyrase was employed using ELISA, western blot, and mouse immunization methods to verify IgE reactivity. RESULTS: Most of the schistosomiasis patient's (75%) serum was seropositive for potato apyrase and this protein was recognized using western blotting, suggesting that parasite and plant proteins share IgE-binding epitopes. C57BL/6 mice immunized with potato apyrase showed increased IgE antibody production. CONCLUSIONS: Potato apyrase and SmATPDases have IgE-binding epitopes.


Subject(s)
Antibodies, Helminth/immunology , Apyrase/immunology , Epitopes/immunology , Immunoglobulin E/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Solanum tuberosum/enzymology , Animals , Blotting, Western , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Mice, Inbred C57BL
15.
Exp Parasitol ; 200: 1-6, 2019 May.
Article in English | MEDLINE | ID: mdl-30904692

ABSTRACT

Nucleoside triphosphate diphosphohydrolase (NTPDase) 1 from intracellular amastigotes of Leishmania infantum-infected macrophage was identified by immunocytochemistry and confocal laser scanning microscopy using antibodies that specifically recognize its B-domain. This enzyme was previously characterized in Leishmania promastigote form, and here it is shown to be susceptible to pentamidine isethionate (PEN). In initial assays, this antileishmanial compound (100 µM) reduced 60% phosphohydrolytic activity of promastigotes preparation. An active NTPDase 1 was then isolated by non-denaturing gel electrophoresis, and PEN (10 µM) inhibited 74% and 35% of the ATPase and ADPase activities, respectively, of this pure protein. In addition, PEN 0.1-1 µM inhibited 56% potato apyrase activity, a plant protein that shares high identity with Leishmania NTPDase 1. In contrast, amphotericin B, fluconazole, ketoconazole or allopurinol did not significantly affect phosphohydrolytic activity of either promastigotes preparation or potato apyrase. This work suggests amastigote NTPDase 1 as a new molecular target, and inhibition of its catalytic activity by pentamidine can be part of the mode of action of this drug contributing with the knowledge of its antileishmanial effect.


Subject(s)
Antiprotozoal Agents/pharmacology , Apyrase/antagonists & inhibitors , Leishmania infantum/drug effects , Leishmania infantum/enzymology , Pentamidine/pharmacology , Animals , Antigens, CD , Immunohistochemistry , Macrophages/parasitology , Male , Mice , Mice, Inbred BALB C , Microscopy, Confocal
16.
HU rev ; 45(3): 254-260, 2019.
Article in Portuguese | LILACS | ID: biblio-1049302

ABSTRACT

Introdução: Dentre os corantes de fontes naturais disponíveis no mercado, os mais comuns são aquelas capazes de conferir as cores vermelha, roxa, laranja e amarela, sendo a coloração azul relativamente escassa. A espécie Ravenala madagascariensis, também conhecida como árvore dos viajantes, é uma planta oriunda da Ilha de Madagascar, África do Sul, característica por sementes recobertas por arilos fibrosos de coloração azul intensa. Objetivo: Descrever uma metodologia capaz de extrair e incorporar os corantes azuis presentes nos arilos em uma formulação dermocosmética estável. Metodologia: Foi realizado screening com distintos líquidos extratores para a obtenção do extrato dos arilos. O extrato em ciclometicone foi incorporado em preparações cosméticas empregando-se as bases Polawax® e Cold cream. Após a avaliação dos aspectos sensoriais, a formulação preparada com Polawax foi direcionada para avaliação de estabilidade acelerada (15 dias) de acordo com o protocolo definido pela ANVISA. Resultados: O melhor processo extrativo foi obtido pela utilização do ciclometicone, que é um excipiente compatível com o preparo de formulações cosméticas. O produto contendo 1% do extrato dos arilos em ciclometicone, incorporado à base Polawax, foi avaliado em relação às variáveis aspecto, cor (azul), odor, sensação ao tato e pH (5,5) e não apresentou alterações no ensaio de estabilidade acelerado. Conclusão: Com a metodologia apresentada, foi possível extrair e preparar uma formulação dermocosmética estável com nova proposta de corante azul, aplicável como excipiente para formulações.


Introduction: Among the dyes from natural sources available in the market, the most common are those capable of giving the colors red, purple, orange and yellow, being the blue coloration relatively scarce. The Ravenala madagascariensis species, also known as the traveler's tree, is a plant from Madagascar Island, South Africa, characterized by seeds covered by intense blue colored fibrous aryls. Objective: To describe a methodology capable of extracting and incorporating the blue dyes present in aryls in a stable dermocosmetic formulation. Methodology:Screening with different extracting liquids was performed to obtain the extract of the arils. The cyclomethicone extract was incorporated into cosmetic preparations using the Polawax® and Cold cream bases. After evaluation of sensory aspects, the formulation prepared with Polawax was directed to accelerated stability evaluation (15 days) according to the protocol defined by ANVISA. Results: The best extraction process was obtained by the use of cyclomethicone, which is an excipient compatible with the preparation of cosmetic formulations. The product containing 1% of the cyclomethicone aryl extract, incorporated into the Polawax base, was evaluated in relation to the variables appearance, color (blue), odor, touch sensation and pH (5.5) and showed no changes in the stability test accelerated. Conclusion:With the methodology presented, it was possible to extract and prepare a stable dermocosmetic formulation with new blue dye proposal, applicable as an excipient for formulations.


Subject(s)
Plants , Chemistry, Pharmaceutical , Color , Cosmetics , Guidelines as Topic , Coloring Agents , Brazilian Health Surveillance Agency , Cosmetic Coloring Agents
17.
Rev. Soc. Bras. Med. Trop ; 52: e20180139, 2019. graf
Article in English | LILACS | ID: biblio-1041506

ABSTRACT

Abstract INTRODUCTION: High percentages of structural identity and cross-immunoreactivity have been reported between potato apyrase and Schistosoma mansoni ATP diphosphohydrolase (SmATPDases) isoforms, showing the existence of particular epitopes shared between these proteins. METHODS: Potato apyrase was employed using ELISA, western blot, and mouse immunization methods to verify IgE reactivity. RESULTS: Most of the schistosomiasis patient's (75%) serum was seropositive for potato apyrase and this protein was recognized using western blotting, suggesting that parasite and plant proteins share IgE-binding epitopes. C57BL/6 mice immunized with potato apyrase showed increased IgE antibody production. CONCLUSIONS: Potato apyrase and SmATPDases have IgE-binding epitopes.


Subject(s)
Animals , Female , Apyrase/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Solanum tuberosum/enzymology , Immunoglobulin E/immunology , Antibodies, Helminth/immunology , Epitopes/immunology , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Cross Reactions , Mice, Inbred C57BL
18.
Biomed Pharmacother ; 94: 489-498, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28780467

ABSTRACT

Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H2O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400µg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125µg/mL), which showed similar antiviral effect to acyclovir (50µg/mL) when tested at 400µg/mL. Also, AL (400, 200, and 100µg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans.


Subject(s)
Antiviral Agents/pharmacology , Arctium/chemistry , Herpesvirus 1, Human/drug effects , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Animals , Cell Death/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Male , Plant Extracts/chemistry , Reproduction/drug effects , Spectrometry, Mass, Electrospray Ionization , Vero Cells
20.
HU rev ; 41(3/4): 101-111, dez. 2015.
Article in Portuguese | LILACS | ID: biblio-1808

ABSTRACT

As proteínas desempenham a maior parte das funções fisiológicas das células, constituindo também importantes alvos farmacológicos e biomarcadores de doenças. A pesquisa qualitativa, quantitativa e a elucidação estrutural destas moléculas são fundamentais para a compreensão do funcionamento dos sistemas biológicos, bem como na aplicação destas para o desenvolvimento de novos métodos diagnóstico. O estudo do proteoma nos permite identificar as proteínas que estão sendo expressas em um determinado momento, quantificá-las e observar suas modificações pós-transducionais. Dessa maneira, a análise proteômica fornece informações mais abrangentes e que não podem ser inferidas a partir das informações obtidas através da análise genômica. Este tipo de estudo envolve etapas como: extração e tratamento da amostra, separação das proteínas e/ou peptídeos, espectrometria de massas e análise dos dados usando ferramentas de bioinformática. O presente trabalho faz uma revisão narrativa sobre as principais técnicas aplicadas desde o preparo de amostras até a identificação das proteínas.


Subject(s)
Mass Spectrometry , Proteomics , Peptides , Biomarkers , Proteins , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...