Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 234, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400930

ABSTRACT

In recent years, microbial carotenoids have emerged as a promising alternative for the pharmaceutical and food industries, particularly in promoting human health due to their potent antioxidant and antimicrobial properties. Microbial carotenoids, particularly those produced by yeast, bacteria, and microalgae, are synthesized intracellularly, requiring the use of solvents for their effective extraction and recovery. The conventional use of toxic volatile organic solvents (VOCs) like hexane, petroleum ether, and dimethyl sulfoxide in the extraction of microbial carotenoids has been common. However, ongoing research is introducing innovative, non-toxic, environmentally friendly tailor-made solvents, such as ionic liquids (IL) and deep eutectic solvents (DES), indicating a new era of cleaner and biocompatible technologies. This review aims to highlight recent advancements in utilizing IL and DES for obtaining carotenoids from microorganisms. Additionally, we explore the utilization of in silico tools designed to determine the solubilities of microbial carotenoids in tailor-made DES and ILs. This presents a promising alternative for the scientific community, potentially reducing the need for extensive experimental screening of solvents for the recovery of microbial carotenoids in the separation processing. According to our expert perspective, both IL and DES exhibit a plethora of exceptional attributes for the recovery of microbial carotenoids. Nevertheless, the current employment of these solvents for recovery of carotenoids is restricted to scientific exploration, as their feasibility for practical application in industrial settings has yet to be conclusively demonstrated. KEY POINTS: • ILs and DES share many tailoring properties for the recovery of microbial carotenoids • The use of ILs and DES for microbial carotenoid extraction remains driven by scientific curiosity. • The economic feasibility of ILs and DES is yet to be demonstrated in industrial applications.


Subject(s)
Carotenoids , Ionic Liquids , Humans , Solvents , Antioxidants , Dimethyl Sulfoxide
2.
Food Chem ; 443: 138610, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38301562

ABSTRACT

Given their multifaceted roles, carotenoids have garnered significant scientific interest, resulting in a comprehensive and intricate body of literature that occasionally presents conflicting findings concerning the proper characterization, quantification, and bioavailability of these compounds. Nevertheless, it is undeniable that the pursuit of novel carotenoids remains a crucial endeavor, as their diverse properties, functionalities and potential health benefits make them invaluable natural resources in agri-food and health promotion through the diet. In this framework, particular attention is given to ketocarotenoids, viz., astaxanthin (one of them) stands out for its possible multifunctional role as an antioxidant, anticancer, and antimicrobial agent. It has been widely explored in the market and utilized in different applications such as nutraceuticals, food additives, among others. Adonirubin and adonixanthin can be naturally found in plants and microorganisms. Due to the increasing significance of natural-based products and the remarkable opportunity to introduce these ketocarotenoids to the market, this review aims to provide an expert overview of the pros and cons associated with adonirubin and adonixanthin.


Subject(s)
Canthaxanthin/analogs & derivatives , Carotenoids , Antioxidants
3.
Food Res Int ; 173(Pt 1): 113266, 2023 11.
Article in English | MEDLINE | ID: mdl-37803579

ABSTRACT

In this study, different Deep Eutectic Solvents based on choline chloride ([Ch]Cl) with carboxylic acids, sugars, and glycerol, were investigated as alternative solvents for the extraction of flavonoids from soybean and okara. Initially, the COSMO-SAC was investigated as a tool in solvent screening for the extraction of flavonoids. Experimental validation was performed using total flavonoid analysis with the solvents that showed greater interaction with the solutes. The extracts obtained from soybean and okara using the DES [Ch]Cl:acetic acid added with 30 % water showed the highest total flavonoid content, 1.05 mg eq. of catechin/g dry soybean and 0.94 mg eq. of catechin /g dry okara, respectively. For phenolic compound extraction, [Ch]Cl: acetic acid DES extracted approximately 1.16 mg GAE/g of soybean and 0.69 mg GAE/g of okara. For antioxidant activity, soybean and okara extracts obtained with [Ch]Cl: acetic acid showed FRAP results of 0.40 mg Trolox/mL of extract and 0.45 mg Trolox/mL of extract, respectively. In addition, the isoflavones daidzein, genistein, glycitein, daidzin, genistin, and glycitin were identified and quantified in the soybean and okara extracts obtained with DES [Ch]Cl: acetic acid with 30% water, totaling 1068.05 and 424.32 µg total isoflavones/g dry sample. Therefore, The COSMO-SAC model was a useful tool in solvent screening, saving time and costs. Also, DES can be an alternative solvent for extracting flavonoids to replace conventional organic solvents, respecting current environmental and human health concerns.


Subject(s)
Catechin , Isoflavones , Humans , Flavonoids/analysis , Glycine max , Deep Eutectic Solvents , Plant Extracts/analysis , Isoflavones/analysis , Solvents/analysis , Water , Acetates
4.
Food Res Int ; 173(Pt 2): 113440, 2023 11.
Article in English | MEDLINE | ID: mdl-37803766

ABSTRACT

Oils and fats are important ingredients for food and pharmaceutical industries. Their main compounds, such as triacylglycerols (TAG), are responsible for determining their physical properties during food storage and consumption. Lipid-rich foods are also sources of minority compounds, which is the case of vitamin E, mainly represented by (±)-α-tocopherol. These compounds can interact with the main lipid molecules in food formulation leading to modification on lipids' physicochemical properties during processes, storage, as well as during digestion, possibly altering their nutritional functionalities, which is the case of vitamin E antioxidant abilities, but also their solubility in the systems. In this case, the study of the phase-behavior between (±)-α-tocopherol and lipid compounds can elucidate these physicochemical changings. Therefore, this work was aimed at determining the solid-liquid equilibrium (SLE) of binary mixtures of TAG (tripalmitin, triolein and tristearin) and (±)-α-tocopherol including the complete description of their phase diagrams. Melting data were evaluated by Differential Scanning Calorimetry, Microscopy, X-Ray Diffraction, and thermodynamic modeling by using Margules, UNIFAC, and COSMO-SAC models. Experimental results showed that systems presented a monotectic-like behavior, with a significant decreasing in TAG melting temperature by the addition of (±)-α-tocopherol. This high affinity and attractive strengths between these molecules were also observed by thermodynamic modeling, whose absolute deviations were below 2 %. Micrographs and X-ray diffraction evidenced the possible formation of solid solutions. Both behaviors are interesting by avoiding phase separation on food in solid and liquid phases, possibly improving the antioxidant role the (±)-α-tocopherol in lipid-base systems.


Subject(s)
Vitamin E , alpha-Tocopherol , Vitamin E/chemistry , alpha-Tocopherol/chemistry , Antioxidants , Triglycerides/chemistry , Temperature
5.
Food Res Int ; 157: 111194, 2022 07.
Article in English | MEDLINE | ID: mdl-35761520

ABSTRACT

Mate leaves are highly appreciated in south and central America as food ingredient for tea preparation. Their nutritional importance, due to their high content of polyphenols and other nutraceuticals, has been drawing attention worldwide, especially to produce extracts and biopharmaceuticals. However, the extraction of such nutraceuticals using conventional processes/solvents might impact their profile/concentration. Ionic liquids (ILs) and deep eutectic solvents (DES) have been recognized as green solvents, and more recently the naturally-derived have stood out. In this work, we investigated the use of bioethanol, cholinium chloride ([Ch]Cl), Ch-based DES and less expensive protic ILs derived from acetic acid, in aqueous systems at different concentrations, as potential sustainable alternatives over conventional solvents and more expensive aprotic ILs for the extraction of polyphenols from mate leaves. Simply adding the [Ch]Cl in aqueous-ethanolic mixtures at 50% improved extraction efficiency (∼35 mg/g) in comparison to conventional solvents (∼7-29 mg/g). However, IL (∼41-66 mg/g) and DES (∼47-55 mg/g) systems presented better performance, being the former presenting the best results at 75% (∼66 mg/g). The extraction yield was also related to water concentration, which is interesting to reduce viscosity and IL/DES cost for a more cost-efficient extraction and was also supported by results obtained using COSMO-SAC. Therefore, the low-cost protic IL and DES are promising sustainable solvent alternatives over conventional solvents/ILs for extraction of polyphenols from mate leaves.


Subject(s)
Ionic Liquids , Deep Eutectic Solvents , Phenols , Plant Leaves , Polyphenols , Solvents , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...