Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sport Nutr Exerc Metab ; 33(3): 133-140, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36963409

ABSTRACT

ß-Alanine (BA) is one of the most widely used sport supplements, due to its capacity to improve high-intensity exercise performance by increasing muscle carnosine (MCarn) content, and consequently, the buffering capacity of the muscle. BA is also available in a variety of animal foods, but little is currently known about the influence of dietary BA intake on MCarn. The aim of the current study was to compile a detailed summary of available data on the BA content of commonly consumed foods, and to explore whether associations could be detected between self-reported dietary BA intake and skeletal MCarn in a group of 60 healthy, active, omnivorous men and women. Dietary BA intake was assessed via 3-day food records, and MCarn content assessed by high-performance liquid chromatography. A series of univariate and multivariate linear regression models were used to explore associations between estimated dietary BA and MCarn. No evidence of associations between dietary BA intake and MCarn were identified, with effect sizes close to zero calculated from models accounting for key demographic variables (f2 ≤ 0.02 for all analyses). These findings suggest that capacity to increase MCarn via dietary strategies may be limited, and that supplementation may be required to induce increases of the magnitude required to improve performance.


Subject(s)
Carnosine , Animals , Female , Diet , Dietary Supplements , Muscle, Skeletal , beta-Alanine
2.
J Sports Sci ; 39(11): 1295-1301, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33491594

ABSTRACT

The availability of dietary beta-alanine (BA) is the limiting factor in carnosine synthesis within human muscle due to its low intramuscular concentration and substrate affinity. Carnosine can accept hydrogen ions (H+), making it an important intramuscular buffer against exercise-induced acidosis. Metabolite accumulation rate increases when exercising in hypoxic conditions, thus an increased carnosine concentration could attenuate H+ build-up when exercising in hypoxic conditions. This study examined the effects of BA supplementation on high intensity cycling capacity in normoxia and hypoxia. In a double-blind design, nineteen males were matched into a BA group (n = 10; 6.4 g·d-1) or a placebo group (PLA; n = 9) and supplemented for 28 days, carrying out two pre- and two post-supplementation cycling capacity trials at 110% of powermax, one in normoxia and one in hypoxia (15.5% O2). Hypoxia led to a 9.1% reduction in exercise capacity, but BA supplementation had no significant effect on exercise capacity in normoxia or hypoxia (P > 0.05). Blood lactate accumulation showed a significant trial x time interaction post-supplementation (P = 0.016), although this was not significantly different between groups. BA supplementation did not increase high intensity cycling capacity in normoxia, nor did it improve cycling capacity in hypoxia even though exercise capacity was reduced under hypoxic conditions.


Subject(s)
Bicycling/physiology , Carnosine/biosynthesis , Dietary Supplements , Hypoxia/metabolism , Muscle, Skeletal/metabolism , beta-Alanine/metabolism , Acidosis, Lactic/blood , Analysis of Variance , Double-Blind Method , Exercise Test , Exercise Tolerance/physiology , Humans , Hydrogen/metabolism , Male , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/metabolism , Placebos , Single-Blind Method , Young Adult , beta-Alanine/administration & dosage
3.
Med Sci Sports Exerc ; 52(8): 1801-1808, 2020 08.
Article in English | MEDLINE | ID: mdl-32102054

ABSTRACT

PURPOSE: To describe the reliability of blood bicarbonate pharmacokinetics in response to sodium bicarbonate (SB) supplementation across multiple occasions and assess, using putative thresholds, whether individual variation indicated a need for individualized ingestion timings. METHODS: Thirteen men (age 27 ± 5 yr; body mass [BM], 77.4 ± 10.5 kg; height, 1.75 ± 0.06 m) ingested 0.3 g·kg BM SB in gelatine capsules on three occasions. One hour after a standardized meal, venous blood was obtained before and every 10 min after ingestion for 3 h, then every 20 min for a further hour. Time to peak (Tmax), absolute peak (Cmax), absolute peak change ([INCREMENT]Cmax), and area under the curve were analyzed using mixed models, intraclass correlation coefficient, coefficient of variation and typical error. Individual variation in pharmacokinetic responses was assessed using Bayesian simulation with multilevel models with random intercepts. RESULTS: No significant differences between sessions were shown for blood bicarbonate regarding Cmax, [INCREMENT]Cmax or area under the curve (P > 0.05), although Tmax occurred earlier in SB2 (127 ± 36 min) than in SB1 (169 ± 54 min, P = 0.0088) and SB3 (159 ± 42 min, P = 0.05). Intraclass correlation coefficient, coefficient of variation, and typical error showed moderate to poor reliability. Bayesian modeling estimated that >80% of individuals from the population experience elevated blood bicarbonate levels above +5 mmol·L between 75 and 240 min after ingestion, and between 90 and 225 min above +6 mmol·L. CONCLUSIONS: Assessing SB supplementation using discrete values showed only moderate reliability at the group level, and poor reliability at the individual level, whereas Tmax was not reproducible. However, when analyzed as modeled curves, a 0.3-g·kg BM dose was shown to create a long-lasting window of ergogenic potential, challenging the notion that SB ingestion individualized to time-to-peak is a necessary strategy, at least when SB is ingested in capsules.


Subject(s)
Dietary Supplements , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/pharmacokinetics , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/pharmacokinetics , Adult , Area Under Curve , Bayes Theorem , Cross-Over Studies , Humans , Hydrogen-Ion Concentration , Male , Sodium Bicarbonate/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...