Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 257(3): 931-948, 2020 May.
Article in English | MEDLINE | ID: mdl-31950285

ABSTRACT

This study addresses gaps in our understanding of pre-fertilization and archegonia development and reinterprets embryonic ontogenesis from Burlingame (Bot Gaz 59:1-39, 1915) to the present based on timescale and structural features allowing us to determine functionally and developmentally accurate terminology for all these stages in A. angustifolia. Different from previous reports, only after pollination, pre-fertilization tissue development occurs (0-13 months after pollination (MAP)) and gives rise to a mature megagametophyte. During all this period, pollen is in a dormant state at the microphyla, and pollen tube germination in nucellus tissue is only observed at the stage of archegonia formation (13 MAP) and not at the free nuclei stage as reported before. For the first time, 14 months after pollination, a fertilization window was indicated, and at 15 MAP, the polyzygotic polyembryony from different archegonia was also seen. After that, subordinated proembryo regression occurs and at least three embryonic developmental stages of dominant embryo were characterized: proembryogenic, early embryogenic, and late embryogenic (15-23 MAP). Along these stages, histochemical and ultrastructural analyses suggest the occurrence of cell death in suspensor and in cap cells of dominant embryo that was not previously reported. The differentiation of meristems, procambium, pith, and cortex tissues in late embryogenic stage was detailed. The morphohistological characterization of pre-fertilization and embryonic stages, together with the timescale of megastrobili development, warranted a referential map of female reproductive structure in this species.


Subject(s)
Araucaria/chemistry , Pollen/embryology , History, 20th Century , History, 21st Century
3.
Methods Mol Biol ; 1359: 439-50, 2016.
Article in English | MEDLINE | ID: mdl-26619879

ABSTRACT

This chapter deals with the features of somatic embryogenesis (SE) in Araucaria angustifolia, an endangered and native conifer from south Brazil. In this species SE includes the induction and proliferation of embryogenic cultures composed of pro-embryogenic masses (PEMs), which precede somatic embryos development. A. angustifolia SE model encompasses induction, proliferation, pre-maturation, and maturation steps. Double-staining with acetocarmine and Evan's blue is useful to evaluate the embryonic somatic structures. In this chapter we describe A. angustifolia SE protocols and analyzes morphological features in the different SE developmental stages.


Subject(s)
Plant Development/genetics , Plant Somatic Embryogenesis Techniques/methods , Tissue Culture Techniques/methods , Tracheophyta/growth & development , Brazil , Flowers/genetics , Flowers/growth & development , Germination/genetics , Seeds/genetics , Seeds/growth & development , Tracheophyta/genetics
4.
Protoplasma ; 253(2): 487-501, 2016 03.
Article in English | MEDLINE | ID: mdl-25968333

ABSTRACT

Somatic embryogenesis is a morphogenetic route useful for the study of embryonic development, as well as the large-scale propagation of endangered species, such as the Brazilian pine (Araucaria angustifolia). In the present study, we investigated the morphological and ultrastructural organization of A. angustifolia somatic embryo development by means of optical and electron microscopy. The proembryogenic stage was characterized by the proliferation of proembryogenic masses (PEMs), which are cellular aggregates composed of embryogenic cells (ECs) attached to suspensor-like cells (SCs). PEMs proliferate through three developmental stages, PEM I, II, and III, by changes in the number of ECs and SCs. PEM III-to-early somatic embryo (SE) transition was characterized by compact clusters of ECs growing out of PEM III, albeit still connected to it by SCs. Early SEs showed a dense globular embryonic mass (EM) and suspensor region (SR) connected by embryonic tube cells (TCs). By comparison, early somatic and zygotic embryos showed similar morphology. ECs are round with a large nucleus, nucleoli, and many cytoplasmic organelles. In contrast, TCs and SCs are elongated and vacuolated with cellular dismantling which is associated with programmed cell death of SCs. Abundant starch grains were observed in the TCs and SCs, while proteins were more abundant in the ECs. Based on the results of this study, a fate map of SE development in A. angustifolia is, for the first time, proposed. Additionally, this study shows the cell biology of SE development of this primitive gymnosperm which may be useful in evolutionary studies in this area.


Subject(s)
Seeds/ultrastructure , Trees/ultrastructure , Culture Techniques , Seeds/growth & development , Trees/growth & development
5.
Photochem Photobiol ; 91(2): 359-70, 2015.
Article in English | MEDLINE | ID: mdl-25443444

ABSTRACT

The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 µm. Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 µmol photons m(-2)  s(-1) , PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) during a 12-h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.


Subject(s)
Cell Wall/radiation effects , Chloroplasts/radiation effects , Copper/toxicity , Photons , Photosynthesis/radiation effects , Rhodophyta/radiation effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Chlorophyll/biosynthesis , Chlorophyll A , Chloroplasts/drug effects , Chloroplasts/physiology , Chloroplasts/ultrastructure , Microscopy, Electron, Transmission , Photoperiod , Photosynthesis/drug effects , Photosynthesis/physiology , Phycobiliproteins/biosynthesis , Pigments, Biological/biosynthesis , Rhodophyta/drug effects , Rhodophyta/physiology , Rhodophyta/ultrastructure , Ultraviolet Rays
6.
Microsc Microanal ; 20(5): 1411-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24983815

ABSTRACT

The in vitro effect of cadmium (Cd) on apical segments of Pterocladiella capillacea was examined. Over a period of 7 days, the segments were cultivated with the combination of different salinities (25, 35, and 45 practical salinity units) and Cd concentrations, ranging from 0.17 to 0.70 ppm. The effects of Cd on growth rates and content of photosynthetic pigments were analyzed. In addition, metabolic profiling was performed, and samples were processed for microscopy. Serious damage to physiological performance and ultrastructure was observed under different combinations of Cd concentrations and salinity values. Elementary infrared spectroscopy revealed toxic effects registered on growth rate, photosynthetic pigments, chloroplast, and mitochondria organization, as well as changes in lipids and carbohydrates. These alterations in physiology and ultrastructure were, however, coupled to activation of such defense mechanisms as cell wall thickness, reduction of photosynthetic harvesting complex, and flavonoid. In conclusion, P. capillacea is especially sensitive to Cd stress when intermediate concentrations of this pollutant are associated with low salinity values. Such conditions resulted in metabolic compromise, reduction of primary productivity, i.e., photosynthesis, and carbohydrate accumulation in the form of starch granules. Taken together, these findings improve our understanding of the potential impact of this metal in the natural environment.


Subject(s)
Cadmium/toxicity , Rhodophyta/drug effects , Rhodophyta/growth & development , Metabolome , Microscopy , Pigments, Biological/analysis , Rhodophyta/chemistry , Rhodophyta/cytology , Salinity , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...