Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Heliyon ; 10(12): e33131, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022100

ABSTRACT

Early fetal sex determination is of crucial importance in the management of prenatal diagnosis of X-linked genetic abnormalities and congenital adrenal hyperplasia. The development of an efficient and simple method for high-sensitivity, affordable, and rapid screening of cell-free fetal DNA (cffDNA) is crucial for fetal sex determination in early pregnancy. In this study, single- and dual-fluorophore DNA biosensors based on multi-walled carbon nanotubes (MWCNT) were fabricated for the individual and simultaneous detection of the SRY gene and DYS14 marker in cffDNA obtained from maternal plasma samples. This nanosensing platform is based on the immobilization of single-stranded DNA (ssDNA) probes, labeled with ROX or FAM fluorophores, on MWCNT, resulting in the quenching of fluorescence emission in the absence of the targets. Upon the addition of the complementary target DNA (ctDNA) to the hybridization reaction, the fluorescence emission of fluorophore-labeled probes was significantly recovered to 79.5 % for ROX-labeled probes (i.e. SRY-specific probes), 81.5 % for FAM-labeled probes (i.e. DYS14-specific probes), and 65.9 % for dual-fluorophore biosensor compared to the quenching mode. The limit of detection (LOD) for ROX, and FAM was determined to be 4.5 nM, and 7.6 nM, respectively. For dual-color probes, LOD was found to be 5.4 (ROX) and 9.2 nM (FAM). Finally, the clinical applicability of the proposed method was confirmed through the detection of both biomarkers in maternal plasma samples, suggesting that the proposed nanosensing platform may be useful for the early detection of fetal sex using cffDNA.

2.
J Fluoresc ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493859

ABSTRACT

In this study, a citalopram optical nano-sensor was developed. Citalopram is a well-known antidepressant drug that reduces the reuptake of serotonin in neurons as a result, serotonin neurotransmission, the primary response to antidepressant treatments, increases in many parts of the brain. This study introduces a carbon quantum dots (CQDs)-based optical nanosensor for rapid detection of citalopram. This fluorescent nanosensor was made through the polymerization of tetraethyl orthosilicate in the presence of CQDs as the fluorescent materials and citalopram as the template molecule. Following the polymerization, the templated molecules were washed and removed from the structure, and the matrix of the polymer was left with some cavities that resembled citalopram in terms of size and shape. The final structure which is used as a chemical nanosensor, is named carbon quantum dots embedded silica molecularly imprinted polymer (CQDs-SMIP). The materials used in designing nano-sensors were characterized using FTIR, UV/Vis, and fluorescence spectroscopy, as well as high-resolution transmission electron microscopy (HR-TEM), and field emission scanning electron microscopy (FESEM). CQDs-SMIP showed a strong fluorescence emission at 420 nm in the absence of the template molecule. The fluorescence intensity of the nanosensor decreased in the presence of citalopram. The correlation between the extent of the fluorescence quenching and the concentration of citalopram provided the nano-sensor signal. The nano-sensor was used to measure citalopram in complex matrices such as human plasma and urine samples with remarkable selectivity and sensitivity. The detection limit of 10.3 µg.L-1 over a linear range of 100 to 700 µg.L-1, and RSD of 3.15% was obtained. This nano-sensor was applied to analyze of citalopram in plasma and human urine samples with remarkable results.

3.
Food Chem ; 410: 135383, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36638629

ABSTRACT

A nanosensor is designed for rapid detection of the gluten content of wheat-containing samples. Gluten is a plant protein that causes allergy in individuals and leads to celiac disease. Since in a celiac diet trace amounts of gluten are able to prompt allergic reactions, a food-allergen label must be provided on foodstuffs and be seriously considered by food industries. Various analytical methods and commercial immunoassays are used for such analyses but prices per test, especially for low-income countries are high. Thus, a rapid, sensitive, simple, and inexpensive detecting tool seems essential. A solution can be designing a gluten optical nanosensor. The nanosensor is made of folic-acid-carbon dots and gluten molecularly templates embedded simultaneously in a silicate matrix. Adding gluten to the solution of this nanostructure and its adsorbing on the blank templated space on the nanostructure causes fluorescence enhancement. The concentration range of gluten detection was 0.36 to 2.20 µM.


Subject(s)
Celiac Disease , Food Hypersensitivity , Humans , Glutens/analysis , Carbon/chemistry , Triticum , Diet , Fluorescent Dyes/chemistry
4.
PLoS One ; 18(1): e0279816, 2023.
Article in English | MEDLINE | ID: mdl-36652430

ABSTRACT

Carbendazim (CBZ) as a fungicide is widely used to control fungal diseases in agriculture, veterinary medicine, and forestry. In this study, molecularly imprinted nano-size polymer was synthesized and then combined with multiwalled carbon nanotubes to be used as modifiers for carbon paste electrode to detect carbendazim in water, fruit, agricultural wastewater, and urine samples by using the square-wave technique. Some common ions and pesticides were investigated as interferences in analyte, to study the sensitivity and selectivity of the modified carbon paste electrode for carbendazim. The combination of molecular imprinted polymer and multiwalled carbon nanotubes showed a significant increase in peak current in electrocatalytic activity on electrochemical detection of the carbendazim. The linear range of 1 × 10-10 to 5 × 10-8 molL-1 was investigated. The lower detection limit was determined to be 0.2 × 10-10 molL-1, and the relative standard deviation for the target molecule analysis was 2.07%. The result reveals that the modified carbon paste sensor with Multi walled Carbon Nanotubes (MWCNTs) and Molecular Imprinted Polymer (MIPs) can be used easily, without preparation steps that have high selectivity and sensitivity to determine carbendazim in water, fruit, agricultural wastewater, and urine samples.


Subject(s)
Molecular Imprinting , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Wastewater , Electrochemical Techniques/methods , Electrodes , Polymers/chemistry , Water , Limit of Detection
5.
Biosensors (Basel) ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36291017

ABSTRACT

Early detection of cis phosphorylated tau (cis P-tau) may help as an effective treatment to control the progression of Alzheimer's disease (AD). Recently, we introduced for the first time a monoclonal antibody (mAb) with high affinity against cis P-tau. In this study, the cis P-tau mAb was utilized to develop a label-free immunosensor. The antibody was immobilized onto a gold electrode and the electrochemical responses to the analyte were acquired by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The immunosensor was capable of selective detection of cis P-tau among non-specific targets like trans P-tau and major plasma proteins. A wide concentration range (10 × 10-14 M-3.0 × 10-9 M) of cis P-tau was measured in PBS and human serum matrices with a limit of detection of 0.02 and 0.05 pM, respectively. Clinical applicability of the immunosensor was suggested by its long-term storage stability and successful detection of cis P-tau in real samples of cerebrospinal fluid (CSF) and blood serum collected from human patients at different stages of AD. These results suggest that this simple immunosensor may find great application in clinical settings for early detection of AD which is an unmet urgent need in today's healthcare services.


Subject(s)
Alzheimer Disease , Biosensing Techniques , tau Proteins , Humans , Alzheimer Disease/diagnosis , Antibodies, Monoclonal , Biomarkers/analysis , Biosensing Techniques/methods , Delivery of Health Care , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Immunoassay/methods , Limit of Detection , Early Diagnosis , tau Proteins/isolation & purification
6.
Biosensors (Basel) ; 12(9)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36140105

ABSTRACT

Cortisol, a famous stress biomarker, can be considered a potential predictor of cardiac diseases in humans. The presence of cortisol in saliva has encouraged researchers to design point-of-care devices for cortisol concentration in biological fluids. Here, human salivary cortisol was analyzed through a new non-invasive voltammetric aptasensor. Although cortisol is an electroactive compound, generally, the reduction in the current peak has been considered; however, this does not show a strong signal on a bare electrode surface, especially at low concentration levels. Hence, in this study, cortisol concentration was measured electrochemically and indirectly by monitoring the difference between electrochemical probe signals in the presence and absence of cortisol. A new polymeric nanocomposite of samarium molybdate flower-like nanoparticles decorated in poly(pyrrole) was electro-synthesized on the surface of a glassy carbon electrode. Then, reduced graphene oxide was cast on the surface. Finally, the cortisol aptamer was immobilized covalently on the reduced graphene oxide. This platform was used to increase the oxidation current peak of the ferricyanide solution as a probe as well as its electrocatalyst. The novel designed polymeric has the potential ability for effective immobilization of aptamers on the electrode surface without decreasing their biological activities. Additionally, it can enhance the probe electrochemical signal. The differential pulse voltammetric method (DPV) was applied as the detection technique. By optimizing the effective parameters, a determination range of 5.0 × 10-14-1.5 × 10-11 mol/L and a limit of detection of 4.5 × 10-14 mol/L were obtained. Selectivity of the proposed aptasensor relative to ß-estradiol, progesterone and also prednisolone was studied as well. Finally, cortisol in a healthy human saliva sample was successfully analyzed by the proposed biosensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Metal Nanoparticles , Nanoparticles , Aptamers, Nucleotide/chemistry , Biomarkers , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Estradiol , Ferricyanides , Gold/chemistry , Graphite/chemistry , Humans , Hydrocortisone , Limit of Detection , Metal Nanoparticles/chemistry , Molybdenum , Nanoparticles/chemistry , Prednisolone , Progesterone , Pyrroles , Saliva , Samarium
7.
Mikrochim Acta ; 189(4): 150, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304680

ABSTRACT

This study investigated, for the first time, the antimicrobial properties of polyethylene glycol-functionalized poly(N-phenylglycine) nanoparticles (PNPG-PEG NPs). PNPG-PEG NPs exhibit high extinction coefficient in the near-infrared (NIR) region; they can convert light energy into heat energy with high thermal transformation efficiency. Additionally, they can generate cytotoxic reactive oxygen species (ROS) upon light irradiation. Also, PNPG-PEG NPs are not cytotoxic. All these properties make them appropriate for combined dual-modal photothermal and photodynamic therapies. The antibacterial activity of PNPG-PEG NPs was assessed using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) pathogenic strains. The results revealed that NIR light (810 nm) irradiation for 10 min could kill effectively the planktonic bacteria and destroy Escherichia coli and Staphylococcus aureus biofilms. The results demonstrated that PNPG-PEG NPs represent a very effective nanoplatform for killing of pathogenic bacteria.


Subject(s)
Nanoparticles , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Escherichia coli , Glycine/analogs & derivatives , Staphylococcus aureus
8.
Anal Methods ; 14(8): 813-819, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35138313

ABSTRACT

Herein, we present a facile and sensitive fluorescence resonance energy transfer (FRET) aptasensor for the detection of pathogenic bacteria, where antibiotic-functionalized cerium oxide nanoparticles were served as an energy donor and aptamer-modified gold nanoparticles (aptamer-AuNPs) were employed as an energy acceptor. To illustrate the feasibility of this strategy, Escherichia coli (E. coli) was examined. The strategy for the detection of E. coli bacteria as a target molecule is described using the FRET pair of azithromycin-functionalized CeO2 nanoparticles (Azm-CeO2NPs) and aptamer-AuNPs. The spectral overlap between these two nanoparticles and Azm and the aptamer binding on the surface of E. coli specifically provides the condition, which leads to the occurrence of the FRET phenomenon. In this way, a good linear correlation between the fluorescence intensity of Azm-CeO2NPs and E. coli concentration was obtained in the range of 10-1.5 × 105 cfu mL-1. The detection limit of the proposed method at a signal to noise ratio of 3 (3σ) was estimated to be 1.04 cfu mL-1. Further, the proposed method was applied to detect E. coli in real samples within 30 min, which indicates the applicability of the proposed method. This method could be used for other pathogenic bacterium recognition or synchronous detection by employing molecules that are particular to the desired bacteria.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Animals , Aptamers, Nucleotide/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Cerium , Escherichia coli , Fluorescence Resonance Energy Transfer/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Milk/chemistry , Whey
9.
J Fluoresc ; 31(6): 1843-1853, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519933

ABSTRACT

Recently, prenatal diagnosis with non-invasive insight is a progressive approach in clinical medicine to prevent the birth of infants with genetic abnormalities. Cell free fetal DNA (cffDNA) makes up approximately 3-6% of the bare DNA in the mother's bloodstream which is produced during pregnancy and can be used to detect fetal sex and disease in the early stages. SRY is a gene located on the chromosome Y which determines the sex of male infants. In this work, a new nanobiosensor based on the fluorescence property of r-GQD@HTAB (reduced graphene quantum dots modified with hexadecyl trimethyl ammonium bromide) was fabricated that can identify the SRY gene in cffDNA with high sensitivity and specificity. A detection limit of 0.082 nM and the linear response range of 0.16-1.5 nM was obtained for the method. It was able to discriminate the target sequence with high specificity from the non-target sequences. This biosensor includes a new graphene quantum dot modified with a surfactant, HTAB which leads to high fluorescence emission of it and then more precise differentiation between ssDNA and DsDNA in a solution. In conclusion, it provides a novel analytical tool for detection of small amount of DNA and fetal sex and genetic diseases in early stage with prenatal and noninvasive tests and applicable for clinical use.


Subject(s)
Biosensing Techniques , Cell-Free Nucleic Acids/analysis , Nanotechnology , Prenatal Diagnosis , Sexuality , Fluorescence , Graphite/chemistry , Humans , Quantum Dots/chemistry , Surface-Active Agents/chemistry
10.
Talanta ; 226: 122082, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676645

ABSTRACT

This paper reports on enzyme-like catalytic properties of polyethylene glycol-functionalized poly(N-phenylglycine) (PNPG-PEG) nanoparticles, which have not been explored to date. The developed nanoparticles have the ability to display great inherent peroxidase-like activity at very low concentrations, and are able to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in presence of hydrogen peroxide (H2O2). The oxidized product of TMB has a deep blue color with a maximum absorbance at ~655 nm. The PNPG-PEG nanoparticles exhibit Km values of 0.2828 for TMB and 0.0799 for H2O2, indicating that TMB oxidation takes place at lower concentration of H2O2 in comparison to other nanozymes. Based on the known mechanism of H2O2 oxidation by hexavalent chromium [Cr(VI)] ions to generate hydroxyl radicals (•OH), these nanoparticles were successfully applied for the colorimetric sensing of Cr(VI) ions. The sensor achieved good performance for Cr(VI) sensing with detection limits of 0.012 µM (0.01-0.1 µM linear range) and 0.52 µM (0.05-12.5 µM linear range). The detection scheme was highly selective, and successfully applied for the detection of Cr(VI) in real water samples.


Subject(s)
Colorimetry , Nanoparticles , Chromium , Glycine/analogs & derivatives , Hydrogen Peroxide , Peroxidase , Peroxidases
11.
Food Chem ; 350: 129197, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33618098

ABSTRACT

A fluorescent assay for the selective analysis of tartrazine was developed. Tartrazine is a health-threatening food additive commonly used as fake saffron. An optical nanosensor was fabricated based on molecular imprinting technique in which carbon dots (CDs) as fluorophores and tartrazine as a template molecule were embedded in molecularly imprinted polymer (MIP) matrix. The synthesized CDs embedded in MIP (CDs-MIP) was characterized by various methods. The fluorescence intensity of (CDs-MIP) was selectively quenched in the presence of tartrazine in comparison with other similar food color additives. The correlation between the quenching of CD-MIP and the concentration of tartrazine was used as an optical sensing for rapid detection of tartrazine in the range of 3.3-20.0 nM (1.8-10.7 µg L-1) with detection limit of 1.3 nM (0.70 µg L-1). Eventually, the designed nanosensor was successfully applied for tartrazine detection in foodstuffs such as fake saffron, saffron tea and saffron ice cream samples.


Subject(s)
Crocus/chemistry , Food Contamination/analysis , Limit of Detection , Nanotechnology/instrumentation , Optical Devices , Tartrazine/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , Molecular Imprinting , Quality Control
12.
Anal Bioanal Chem ; 413(6): 1615-1627, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501550

ABSTRACT

Serotonin (5-HT) levels have been associated with several exclusively metabolic disorders. Herein, a new approach for 5-HT level as a novel biomarker of diabetes mellitus is considered using a simple nanocomposite and HPLC method. Reduced graphene oxide (rGO) comprising gold nanoparticles (AuNPs) was decorated with 18-crown-6 (18.Cr.6) to fabricate a simple nanocomposite (rGO-AuNPs-18.Cr.6). The nanocomposite was positioned on a glassy carbon electrode (GCE) to form an electrochemical sensor for the biomarker 5-HT in the presence of L-tryptophan (L-Trp), dopamine (DA), ascorbic acid (AA), urea, and glucose. The nanocomposite exhibited efficient catalytic activity for 5-HT detection by square-wave voltammetry (SWV). The proposed sensor displayed high selectivity, excellent reproducibility, notable anti-interference ability, and long-term stability even after 2 months. SWV defined a linear range of 5-HT concentration from 0.4 to 10 µg L-1. A diabetic animal model (diabetic zebrafish model) was then applied to investigate 5-HT as a novel biomarker of diabetes. A limit of detection (LOD) of about 0.33 µg L-1 was found for the diabetic group and 0.15 µg L-1 for the control group. The average levels of 5-HT obtained were 9 and 2 µg L-1 for control and diabetic groups, respectively. The recovery, relative standard deviation (RSD), and relative error (RE) were found to be about 97%, less than 2%, and around 3%, respectively. The significant reduction in 5-HT level in the diabetic group compared to the control group proved that the biomarker 5-HT can be applied for the early diagnosis of diabetes mellitus.


Subject(s)
Diabetes Mellitus/diagnosis , Electrochemical Techniques/methods , Serotonin/analysis , Animals , Ascorbic Acid/analysis , Biomarkers/metabolism , Dopamine/analysis , Electrodes , Glucose/analysis , Gold/chemistry , Hydrogen Bonding , Limit of Detection , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Particle Size , Reproducibility of Results , Tryptophan/analysis , Urea/analysis , Zebrafish
13.
Synth Syst Biotechnol ; 5(4): 293-303, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32954023

ABSTRACT

Natural products (NPs) are a valuable source in the food, pharmaceutical, agricultural, environmental, and many other industrial sectors. Their beneficial properties along with their potential toxicities make the detection, determination or quantification of NPs essential for their application. The advanced instrumental methods require time-consuming sample preparation and analysis. In contrast, biosensors allow rapid detection of NPs, especially in complex media, and are the preferred choice of detection when speed and high throughput are intended. Here, we review diverse biosensors reported for the detection of NPs. The emerging approaches for improving the efficiency of biosensors, such as microfluidics, nanotechnology, and magnetic beads, are also discussed. The simultaneous use of two detection techniques is suggested as a robust strategy for precise detection of a specific NP with structural complexity in complicated matrices. The parallel detection of a variety of NPs structures or biological activities in a mixture of extract in a single detection phase is among the anticipated future advancements in this field which can be achieved using multisystem biosensors applying multiple flow cells, sensing elements, and detection mechanisms on miniaturized folded chips.

15.
Anal Bioanal Chem ; 412(15): 3615-3627, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32291517

ABSTRACT

A novel nanocomposite-modified electrode based on reduced graphene oxide (rGO) decorated with 18-crown-6 (Cr.6) and gold nanoparticles (GNPs) on the surface of a glassy carbon electrode (GCE) was successfully fabricated to investigate the electrochemical sensing of the biomarker L-tryptophan (L-Trp) in the presence of dopamine (DA), ascorbic acid (AA), urea, and glucose. The rGO-GNPs-Cr.6/GCE displayed high electrochemical catalytic activity for L-Trp determination using square-wave voltammetry (SWV). The electrochemical behavior of L-Trp at the rGO-GNPs-Cr.6/GCE displayed higher oxidation current and potential (oxidation peak current of 40 µA at 0.85 V) than rGO-GNPs/GCE, Cr.6/GCE, GNPs/GCE, rGO/GCE, and bare GCE. The SWV demonstrated a linear range of L-Trp concentration from 0.1 to 2.5 µM. A low limit of detection (LOD) was found for L-Trp, with LOD of about 0.48 µM and 0.61 µM in diabetic and normal serum, respectively. The fabricated sensor demonstrated high selectivity and sensitivity, and good stability and reproducibility for L-Trp sensing. Finally, the nanocomposite (rGO-GNPs-Cr.6)-modified GCE was applied for the determination of L-Trp in normal and diabetic human serum samples, and displayed excellent LOD and recoveries higher than 91.8%. Graphical Abstract.


Subject(s)
Crown Ethers/chemistry , Diabetes Mellitus/blood , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Tryptophan/blood , Adult , Biomarkers/blood , Electrochemical Techniques/methods , Female , Humans , Limit of Detection , Oxidation-Reduction
16.
Clin Chim Acta ; 501: 112-119, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31715139

ABSTRACT

Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which plays a significant role in various functions in the body, such as appetite, emotions, and autonomic functions. It is well known that biomarker 5-HT levels can be correlated to several diseases and disorders such as depression, anxiety, irritable bowel, and sleep trouble. Among various methods for detecting the 5-HT biomarker, electrochemical techniques have attracted great interest due to their low cost and ease of operation. However, sensitive and precise electrochemical detection of 5-HT levels is not possible using bare electrodes, thus requiring electrode modification. The present review aims to describe the different electroanalytical methods for 5-HT detection using various surface-modified electrodes such as glassy carbon, carbon fiber, diamond, graphite, and metal electrodes modified with conductive polymers. Perspectives and the modification of electrode surface using applied polymers for 5-HT detection have also been presented.


Subject(s)
Electrochemical Techniques , Serotonin/analysis , Humans
17.
Sensors (Basel) ; 19(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744128

ABSTRACT

The presented manuscript reports the simultaneous detection of a ternary mixture of the benzodiazepines diazepam, lorazepam, and flunitrazepam using an array of voltammetric sensors and the electronic tongue principle. The electrodes used in the array were selected from a set of differently modified graphite epoxy composite electrodes; specifically, six electrodes were used incorporating metallic nanoparticles of Cu and Pt, oxide nanoparticles of CuO and WO3, plus pristine electrodes of epoxy-graphite and metallic Pt disk. Cyclic voltammetry was the technique used to obtain the voltammetric responses. Multivariate examination using Principal Component Analysis (PCA) justified the choice of sensors in order to get the proper discrimination of the benzodiazepines. Next, a quantitative model to predict the concentrations of mixtures of the three benzodiazepines was built employing the set of voltammograms, and was first processed with the Discrete Wavelet Transform, which fed an artificial neural network response model. The developed model successfully predicted the concentration of the three compounds with a normalized root mean square error (NRMSE) of 0.034 and 0.106 for the training and test subsets, respectively, and coefficient of correlation R ≥ 0.938 in the predicted vs. expected concentrations comparison graph.


Subject(s)
Benzodiazepines/isolation & purification , Biosensing Techniques , Electrochemical Techniques , Benzodiazepines/chemistry , Graphite/chemistry , Humans , Metal Nanoparticles/chemistry , Neural Networks, Computer , Principal Component Analysis , Wavelet Analysis
18.
Sci Rep ; 9(1): 12948, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506441

ABSTRACT

Massive integration of biosensors into design of Internet-of-Things (IoT) is vital for progress of healthcare. However, the integration of biosensors is challenging due to limited availability of battery-less biosensor designs. In this work, a combination of nanomaterials for wireless sensing of biological redox reactions is described. The design exploits silver nanoparticles (AgNPs) as part of the RFID tag antenna. We demonstrate that a redox enzyme, particularly, horseradish peroxidase (HRP), can convert AgNPs into AgCl in the presence of its substrate, hydrogen peroxide. This strongly changes the impedance of the tag. The presented example exploits gold nanoparticle (AuNP)-assisted electron transfer (ET) between AgNPs and HRP. We show that AuNP is a vital intermediate for establishing rapid ET between the enzyme and AgNPs. As an example, battery-less biosensor-RFID tag designs for H2O2 and glucose are demonstrated. Similar battery-less sensors can be constructed to sense redox reactions catalysed by other oxidoreductase enzymes, their combinations, bacteria or other biological and even non-biological catalysts. In this work, a fast and general route for converting a high number of redox reaction based sensors into battery-less sensor-RFID tags is described.

19.
Anal Chim Acta ; 1075: 91-97, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31196427

ABSTRACT

Antioxidants are important to protect and maintain biological barriers, such as the skin. Antioxidant effects are often assessed using clinical trials, however these tests are costly and time consuming. In this work we introduce a skin membrane-covered oxygen electrode (SCOE) as an in vitro tool for monitoring H2O2 and antioxidant reactions in skin. The SCOE gives amperometric response to H2O2 concentrations down to 0.05 mM. More importantly, the electrode allows measurements of polyphenol penetration and reaction with H2O2 in skin. Measurements with SCOE show that lipophilic polyphenols such as quercetin, piceatannol, resveratrol, and plant extract from Plantago major impose their antioxidant effect in skin within 2-20 min. Rutin is however too hydrophilic to penetrate into stratum corneum and therefore cannot deliver its antioxidant effect during similar time interval. The measurements are interpreted considering polyphenol partition-penetration through stratum corneum and the reaction with the H2O2-catalase system in the skin. The contribution of other enzymes will be addressed in the future.


Subject(s)
Antioxidants/metabolism , Hydrogen Peroxide/analysis , Inflammation/metabolism , Polyphenols/metabolism , Reactive Oxygen Species/metabolism , Skin/metabolism , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Catalase/metabolism , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Hydrogen Peroxide/metabolism , Hydroquinones/metabolism , Limit of Detection , Oxygen/chemistry , Plant Extracts/chemistry , Plantago/chemistry , Skin/enzymology , Swine
20.
Anal Bioanal Chem ; 411(5): 1075-1084, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30675628

ABSTRACT

A sensitive fluorescent chemical nanosensor for the detection of entacapone (EN) in pharmaceutical samples is introduced. EN is a nitrocatechol drug that functions as a selective and reversible inhibitor of catechol-O-methyl transferase and is widely prescribed in the treatment of Parkinson disease. Molecularly imprinting technology and graphene oxide quantum dots (GOQDs) were employed in designing the EN fluorescent nanosensor. GOQDs were embedded into an inorganic polymer while the imprinting process occurred. The synthesized GOQDs-embedded silica molecularly imprinting polymer (SMIP) showed strong fluorescent emission at 450 nm by exciting at 360 nm. The fluorescence intensity of GOQDs-embedded SMIP was quenched effectively by adsorption of EN as a template molecule. The quenching corresponded to EN concentration in a linear range of at least 0.40-6.00 µM with a limit of detection of 0.31 µM. The designed chemical nanosensor was successfully applied to the analysis of entacapone in some pharmaceutical tablets also containing carbidopa and levodopa (RSD 3.8%).


Subject(s)
Antiparkinson Agents/analysis , Catechols/analysis , Fluorescent Dyes/chemistry , Molecular Imprinting , Nanostructures , Nitriles/analysis , Quantum Dots , Silicon Dioxide/chemistry , Graphite/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...