Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 55(10): 1773-1785, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28197810

ABSTRACT

In daily life, a person's gait-an important marker for his/her health status-is usually assessed using inertial sensors fixed to lower limbs or trunk. Such sensor locations are not well suited for continuous and long duration measurements. A better location would be the wrist but with the drawback of the presence of perturbative movements independent of walking. The aim of this study was to devise and validate an algorithm able to accurately estimate walking cadence and speed for daily life walking in various environments based on acceleration measured at the wrist. To this end, a cadence likelihood measure was designed, automatically filtering out perturbative movements and amplifying the periodic wrist movement characteristic of walking. Speed was estimated using a piecewise linear model. The algorithm was validated for outdoor walking in various and challenging environments (e.g., trail, uphill, downhill). Cadence and speed were successfully estimated for all conditions. Overall median (interquartile range) relative errors were -0.13% (-1.72 2.04%) for instantaneous cadence and -0.67% (-6.52 6.23%) for instantaneous speed. The performance was comparable to existing algorithms for trunk- or lower limb-fixed sensors. The algorithm's low complexity would also allow a real-time implementation in a watch.


Subject(s)
Walking Speed/physiology , Walking/physiology , Acceleration , Adult , Algorithms , Female , Gait/physiology , Humans , Male , Monitoring, Ambulatory/methods , Movement/physiology
2.
Sensors (Basel) ; 16(12)2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27929388

ABSTRACT

The use of the reflected Global Navigation Satellite Systems' (GNSS) signals in Earth observation applications, referred to as GNSS reflectometry (GNSS-R), has been already studied for more than two decades. However, the estimation precision that can be achieved by GNSS-R sensors in some particular scenarios is still not fully understood yet. In an effort to partially fill this gap, in this paper, we compute the Cramér-Rao bound (CRB) for the specific case of static ground-based GNSS-R receivers and scenarios where the coherent component of the reflected signal is dominant. We compute the CRB for GNSS signals with different modulations, GPS L1 C/A and GPS L5 I/Q, which use binary phase-shift keying, and Galileo E1 B/C and E5, using the binary offset carrier. The CRB for these signals is evaluated as a function of the receiver bandwidth and different scenario parameters, such as the height of the receiver or the properties of the reflection surface. The CRB computation presented considers observation times of up to several tens of seconds, in which the satellite elevation angle observed changes significantly. Finally, the results obtained show the theoretical benefit of using modern GNSS signals with GNSS-R techniques using long observation times, such as the interference pattern technique.

3.
Sensors (Basel) ; 16(3)2016 Mar 09.
Article in English | MEDLINE | ID: mdl-27005628

ABSTRACT

Global Navigation Satellite Systems (GNSSs) were originally introduced to provide positioning and timing services for terrestrial Earth users. However, space users increasingly rely on GNSS for spacecraft navigation and other science applications at several different altitudes from the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude. Despite this, space remains a challenging operational environment, particularly on the way from the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability. Following our previous studies, this paper describes the proof of concept "WeakHEO" receiver; a GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also assesses the performance of the receiver in two representative portions of an Earth Moon Transfer Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in a MTO.

4.
Sensors (Basel) ; 14(6): 10234-57, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24922453

ABSTRACT

It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér-Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals.

5.
Sensors (Basel) ; 14(2): 3768-96, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24569773

ABSTRACT

The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

6.
IEEE Trans Biomed Eng ; 55(8): 2064-73, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18632369

ABSTRACT

A platform for high spatial and temporal resolution electrophysiological recordings of in vitro electrogenic cell cultures handling 4096 electrodes at a full frame rate of 8 kHz is presented and validated by means of cardiomyocyte cultures. Based on an active pixel sensor device implementing an array of metallic electrodes, the system provides acquisitions at spatial resolutions of 42 microm on an active area of 2.67 mm x 2.67 mm, and in the zooming mode, temporal resolutions down to 8 micros on 64 randomly selected electrodes. The low-noise performances of the integrated amplifier (11 microV (rms)) combined with a hardware implementation inspired by image/video processing concepts enable high-resolution acquisitions with real-time preprocessing capabilities adapted to the handling of the large amount of acquired data.


Subject(s)
Action Potentials/physiology , Electrophysiology/instrumentation , Membrane Potentials/physiology , Microelectrodes , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Signal Processing, Computer-Assisted/instrumentation , Video Recording/instrumentation , Animals , Cells, Cultured , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...