Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30853, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765091

ABSTRACT

Plastic wastes -including cigarette butts (CBs)- are dangerous for marine ecosystems not only because they contain hazardous chemicals but also because they can finally turn into micro- or even nano-particles that may be ingested by micro- and macro-fauna. Even large pieces of plastics can trap animals. In this research, the pollution status of macroplastics (abundance, size, type, and colour) and cigarette butts (CBs, number/m2) on the northern coasts of the Persian Gulf has been investigated. A total of 19 stations were explored in Bushehr province (Iran), which covers a length equivalent to 160 km of the Persian Gulf coastline. Among the collected plastic waste (2992 items), disposable mugs were the most frequent (18 %). Plastics with sizes 5-15 cm were the most abundant, and the most common type of plastic was PET (P-value <0.05). The origin of most macroplastics was domestic (2269 items). According to the Index of Clean Coasts (ICC), most surveyed beaches were extremely dirty. The average number and density of CBs in this study were 220 and 2.45 items/m2, respectively. Household litter was the most abundant type of waste in the studied beaches, and this problem can be better managed by training and improving the waste disposal culture. In general, it is suggested that an integrated and enhanced management for fishing, sewage and surface water disposal, and sandy recreational beaches be implemented in Bushehr to control plastic waste.

2.
Chemosphere ; 356: 141873, 2024 May.
Article in English | MEDLINE | ID: mdl-38593958

ABSTRACT

Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 µg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.


Subject(s)
Environmental Monitoring , Esters , Phthalic Acids , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Esters/analysis , Soil Pollutants/analysis , Brazil , Soil/chemistry
4.
Environ Res ; 248: 118234, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38272296

ABSTRACT

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Water , Water Pollutants, Chemical/analysis , Esters , Soil/chemistry , Iran , Ecosystem , Phthalic Acids/chemistry , Waste Disposal Facilities
5.
Environ Sci Pollut Res Int ; 30(6): 16707-16718, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36184705

ABSTRACT

The main goal of the current investigation was to decontaminate ibuprofen (IBP) from hospital wastewater using sea mud as an H2O2 activator. Sea sludge was converted into catalysts at different temperatures and residence times in furnaces, and then tested in the removal of IBP, and the most efficient ones were reported for the production of catalysts. The catalyst was optimized at 400 °C and 3 h. SEM-mapping, FTIR, EDX, BET, and BJH experiments were used to characterize the catalyst. Experiments were done at two pulsed and continuous ultrasonication modes in a photoreactor, and their efficiencies were statistically compared. The designed variables included IBP concentration (10-100 mg/L), the catalyst concentration (0-3 g/L), pH (4-9), and time (10-90 min). The oxidation process had the maximum efficiency at pH 4, treatment time of 60 min, catalyst quantity of 5 g/L, and IBP content of 50 mg/L. The catalyst was recycled, and in the fifth stage, the removal efficiency of IBP was reduced to 50%. The amount of energy consumed for treating IBP laden-wastewater using the evaluated catalyst in two modes of continuous and pulsed ultrasonic was calculated as 102 kW h/m3 and 10 kW h/m3, respectively. IBP oxidation process was fitted with the first-order kinetic model. The system can be proposed for purifying hospital and pharmaceutical wastewaters.


Subject(s)
Wastewater , Water Pollutants, Chemical , Ibuprofen/chemistry , Hydrogen Peroxide/chemistry , Sonication , Photolysis , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 851(Pt 2): 158281, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36029813

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a group of chemical compounds which interest to human biological monitoring researches because of their potential carcinogenic, mutagenic, and teratogenic properties. However, the exposure of female beauticians to these contaminants is not well-reported. For biomonitoring of potential exposure of female cosmeticians to PAHs in beauty salons, urine samples were taken from cosmetologist women (n = 50.00) and housewives (n = 35.00) as the exposure group (EG) and control group (CG), respectively. Next, unmetabolized PAHs levels as well as the concentration of - 1-hydroxypyrene (1-OHP) were analyzed in these specimens. In addition, since benzene has some common source with PAHs, in this study t, t'-Muconic acid (TTMA) level was also determined as the metabolite and indicator of exposure to benzene. The results indicated a high detection frequency of the target compounds (PAHs, 1-OHP and TTMA) in the urine specimens of beauticians. The results also showed that there is a significant difference between the concentration of these pollutants in the urine specimens of the exposure and control groups. The median concentration of ΣPAHs, 1-OHP, and TTMA in the before exposure (BE) specimens collected from the exposure group were 337.42 ng/L, 593.92 ng/L, and 247.90 µg/L, respectively. However, a higher concentration of these contaminants was observed in the after exposure specimens with a median concentration of 423.29 ng/L, 745.03 ng/L, and 310.97 µg/L, respectively. In terms of contribution of PAHs compounds in total toxic equivalents, DahA, BaP, and IndP with 59.03, 28.73, and 2.86 % had the largest share. In this study, it was also observed that some kidney damage biomarkers as well as some oxidative stress injury biomarkers are positively and significantly correlated with the urinary values of ∑PAHs. Thus, it can be concluded that high health risks threaten the female beauticians regarding kidney injury and DNA oxidative stress.


Subject(s)
Environmental Pollutants , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Female , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Benzene/analysis , Pyrenes/analysis , Biomarkers/urine , Mutagens , Environmental Monitoring/methods , Occupational Exposure/analysis
7.
Chemosphere ; 307(Pt 4): 135996, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35970214

ABSTRACT

One of the environmental effects of COVID 19 is the contamination of ecosystems with antibiotics due to their high consumption to treat this disease. Many years ago, the distribution of antibiotics including azithromycin (Azi) in wastewater treatment plants in Bushehr city, seawater, and sediment of the Persian Gulf has been investigated. As Azi has been prescribed to COVID 19 patients, contamination of the environment with this drug can also be assumed. Thus, we decided to examine this hypothesis by repeating our previous study during COVID 19 period. We collected wastewater samples from influent, effluent, and different units of three wastewater treatment plants (WWTPs) including one municipal WWTP (Plant A) and two hospital-WWTPs (Plant B and C). Seawater and adjusted sediments were gathered from 8 stations located in the Persian Gulf in two seasons to evaluate the special and temporal variation. The results showed a huge growth of Azi pollution in all studied matrixes. The mean Azi values in the influent of Plant A, B, and C were 145 ng/L, 110 ng/L, and 896 ng/L, which represented an 9, 6, and 48-time increase compared with those obtained in 2017 (before COVID 19). The Azi removal efficiency had a different behavior compared to before COVID 19. The mean concentration of Azi in seawater and sediment samples was 9 ng/L and 6 ng/g, which was 3 and 4-fold higher than the previous study. Opposed to our former study, the Azi amount in the aqueous phase was less subjected to temporal seasonal variations. Our observations indicated the wide distribution of Azi in the environment and a future threat of intense growth of antibiotic resistance in ecosystems.


Subject(s)
COVID-19 Drug Treatment , Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/analysis , Azithromycin , Ecosystem , Environmental Monitoring , Humans , Indian Ocean , Seawater , Wastewater/analysis , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 262: 128091, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33182159

ABSTRACT

Asthma is a common chronic respiratory disease in the world. Short-term exposure to ambient air pollutants is closely related to acute respiratory diseases and asthmatic symptoms. The purpose of this research was to estimate the correlation between exposure to three air pollutants (O3, NO2, and SO2) and hospital admission because of asthmatic disease (HAAD) in the city of Shiraz, southern Iran. The data were collected from the two real-time monitoring stations located in this city. The acquired information was used for developing predictive models by the AirQ software. The findings of this study were reported for two age groups (<15 and 15-64 years old). The highest levels of O3, NO2, and SO2 were obtained 187.33 µg/m3, 34.1 µg/m3, and 491.2 µg/m3 in 2016, respectively, and 227.75 µg/m3, 92.26 µg/m3, and 190.21 µg/m3, respectively, in 2017. Among the mentioned pollutants, the yearly average concentration of SO2 was 8.62 times more than the WHO guideline, during the studied times. The number of extra cases of HAAD for <15 years and 15-64 years caused by the air pollutants in Shiraz were estimated to be 273 and 36, respectively, in 2016, and 243 and 30 for 2017, respectively. The results of this work displayed that air pollutants have caused respiratory problems in Shiraz city. The AirQ model is a facile and potential tool for the prediction of asthma disease to reduce the health risk of atmospheric pollutants in the worldwide.


Subject(s)
Air Pollutants/analysis , Asthma/epidemiology , Environmental Exposure/analysis , Hospitalization/statistics & numerical data , Particulate Matter/analysis , Sulfur Dioxide/analysis , Adolescent , Adult , Cities , Hospitals , Humans , Iran , Male , Middle Aged , Models, Statistical , Young Adult
9.
Environ Sci Pollut Res Int ; 26(29): 29748-29762, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31407259

ABSTRACT

The natural clay is an abundant, accessible, and low-cost material that has the potential for use in the water and wastewater industry. In this paper, Iranian natural clay and clay/Fe-Mn composite were used to remove toxic arsenic from the liquid environment. The natural clay and clay/Fe-Mn composite were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDX), X-ray diffractometry (XRD), thermo-gravimetric analysis (TGA), and atomic force microscopy (AFM) techniques. The effects of parameters (initial pH, temperature, sorption dose, and contact time) on the efficiency and behavior of the arsenic(V) adsorption process were studied. Freundlich (R2 = 0.945 and 0.989), Langmuir (R2 = 0.922 and 0.931), modified Langmuir (R2 = 0.921 and 0.929), and Dubinin-Radushkevich (R2 = 0.706 and 0.723) models were fitted to evaluate the equilibrium data of arsenic(V) adsorption process by natural clay and clay/Fe-Mn composite, respectively. The Langmuir adsorption capacity of arsenic(V) by the natural clay and clay/Fe-Mn composite was determined to be 86.86 mg/g and 120.70 mg/g, respectively. The arsenic(V) adsorption process followed the pseudo-second-order model. Negative values of ΔG° and ΔH° showed that the arsenic(V) sorption by the studied materials is thermodynamically spontaneous and exothermic. According to the findings, the natural clay and clay/Fe-Mn are suitable and recyclable sorbents for arsenic(V) adsorption from aqueous solutions. Also, the composite of clay with iron and manganese can improve the efficiency of clay in the removal of arsenic.


Subject(s)
Arsenates/analysis , Clay/chemistry , Iron/chemistry , Manganese/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Iran , Kinetics , Models, Theoretical , Surface Properties , Thermodynamics , Wastewater/chemistry
10.
Environ Sci Pollut Res Int ; 26(7): 6336-6347, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30617884

ABSTRACT

In the current study, the bio-adsorption potential of Callinectes sapidus biomass for control of cadmium, nickel, and lead from the aqueous stream was assessed. Spectrum analysis of FTIR, AFM, EDAX, mapping, SEM, TEM, and XRF was used to study the properties of the C. sapidus biomass. The XRF analysis revealed that C. sapidus bio-adsorbent has various effective metal oxides that can be useful to adsorb pollutants. The best model to describe the equilibrium data was Freundlich isotherm. The Langmuir bio-adsorption capacity was reported at 31.44 mg g-1, 29.23 mg g-1, and 29.15 mg g-1 for lead, cadmium, and nickel ions, respectively. Pseudo-first-order and pseudo-second-order kinetic models were studied to test the kinetic behavior of the process. An intra-particle diffusion model was used to determine the effective mechanisms involved in the bio-adsorption. Based on t1/2, it can be concluded that the equilibrium speed of the bio-adsorption process is high. The thermodynamic study showed that the metal bio-adsorption process using C. sapidus biomass is exothermic and spontaneous. The field applicability of the crab bio-adsorbent for eliminating concurrently several contaminants (metal ions, antibiotics, sulfate, nitrate, and ammonium) from an actual wastewater was successfully examined.


Subject(s)
Brachyura , Cadmium/isolation & purification , Lead/isolation & purification , Nickel/isolation & purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Animals , Biomass , Brachyura/chemistry , Kinetics , Oxides , Thermodynamics
11.
J Environ Manage ; 204(Pt 1): 531-539, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28934676

ABSTRACT

A biofiltration system was developed to treat benzene, toluene, ethylbenzene, and xylene (BTEX) and Hg° vapour from a petrochemical waste stream during overhaul maintenance. The biofilter compost bed was inoculated with a microbial consortium provided by a petrochemical wastewater treatment plant. The effect of the a BTEX concentration (192.6-973.8 g/m3h) and empty bed residence time (EBRT) of 20-100 s were studied under the conditions of steady state, transient, shock BTEX-loading, and off-restart. The findings revealed that during a biofilter start-up, an increase in the influent BTEX concentration to around 334.3 g/m3h did not notably affect the biofiltration function at an EBRT of 100 s, and the removal efficiency was higher than 98%. Further, the low EBRT of 60 s did not have adverse effects on the BTEX and Hg° biofiltration (the removal efficiency in both was >93%). For the biofiltration system, the BTEX and Hg° critical attenuation capacity were obtained as 663 gBTEX/m3h and 12.6 gHg°/m3h respectively. A maximum attenuation capacity of 774.5 gBTEX/m3h was achieved in the biofilter when the BTEX loading rate was 973.8 gBTEX/m3h. The parameters of km and rmax of the Michaelis-Menten kinetic model were obtained as 0.099 g/m3 and 0.578 g/m3min respectively. Both BTEX and mercury vapours were completely mass balanced during a continuous biofiltration test. In general, the developed treatment system exhibited a good performance in the treatment of the BTEX stream containing Hg° vapour in the off-gas of a petrochemical company.


Subject(s)
Benzene Derivatives/chemistry , Benzene/chemistry , Mercury/chemistry , Toluene/chemistry , Xylenes/chemistry , Biodegradation, Environmental , Filtration , Gases , Kinetics
12.
Data Brief ; 8: 132-5, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27294181

ABSTRACT

In this experimental data article, a novel biomaterial was provided from Malva sylvestris and characterized its properties using various instrumental techniques. The operating parameters consisted of pH and adsorbent dose on Hg(2+) adsorption from aqueous solution using M. sylvestris powder (MSP) were compared with charcoal tablet powder (CTP), a medicinal drug. The data acquired showed that M. sylvestris is a viable and very promising alternative adsorbent for Hg(2+) removal from aqueous solutions. The experimental data suggest that the MSP is a potential adsorbent to use in medicine for treatment of poisoning with heavy metals; however, the application in animal models is a necessary step before the eventual application of MSP in situations involving humans.

13.
Data Brief ; 7: 71-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26955651

ABSTRACT

In this data article, we introduce data acquired from new adsorbent, bi-metalized chitosan particle that is successfully synthesized and applied to remove the orange II dye, an azo dye, from textile wastewater. The adsorbent was meso- and macro-porous material with BET surface area of 12.69 m(2)/g and pHzpc 6.6. The simulated textile-wastewater can be significantly treated using a relatively low quantity of the adsorbent. Overall, the use of bi-metalized chitosan particle can be considered a promising method for eliminating the azo dye from wastewater effectively. Accordingly, these data will be useful for decolorizing of azo dyes from textile wastewater.

14.
ScientificWorldJournal ; 2013: 476271, 2013.
Article in English | MEDLINE | ID: mdl-24348163

ABSTRACT

We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1 mg/L of BCP is 10 min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6 mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1 mg/L, within a short reaction time of 20 min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively.


Subject(s)
Azo Compounds/chemistry , Chitosan/chemistry , Coloring Agents/chemistry , Metals/chemistry , Wastewater/chemistry , Water Purification/methods
15.
Water Sci Technol ; 66(3): 594-602, 2012.
Article in English | MEDLINE | ID: mdl-22744691

ABSTRACT

A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30 °C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals (aliphatic and aromatic hydrocarbons) was also investigated. No biosurfactant was detected during bacterial growth on any aliphatic/aromatic hydrocarbons. The results of hydrophobicity measurements showed no significant difference between naphthalene- and LB-grown cells. The capability of the strain FBHYA2 to degrade naphthalene completely and rapidly without the need to secrete biosurfactant may make it an ideal candidate to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated sites.


Subject(s)
Achromobacter/isolation & purification , Achromobacter/metabolism , Naphthalenes/metabolism , Oil and Gas Fields/microbiology , Petroleum/microbiology , Achromobacter/classification , Achromobacter/growth & development , Biodegradation, Environmental/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Hydrocarbons, Aromatic/pharmacology , Hydrophobic and Hydrophilic Interactions/drug effects , Iran , Kinetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...