Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717279

ABSTRACT

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.

2.
J Labelled Comp Radiopharm ; 62(8): 460-470, 2019 06 30.
Article in English | MEDLINE | ID: mdl-30916408

ABSTRACT

BACKGROUND: 64 Cu (T1/2  = 12.7 h) is an important radionuclide for diagnostic purposes and used for positron emission tomography (PET). A previous method utilized at Paul Scherrer Institute (PSI) proved to be unreliable and, while a method using anion exchange chromatography is a popular choice worldwide, it was felt a different approach was required to obtain a robust chemical separation method. METHODS: Enriched 64 Ni targets were created by electroplating on gold foil. The targets were irradiated with protons degraded to approximately 11 MeV at PSI's Injector 2 72 MeV research cyclotron and subsequently dissolved in HCl. The resultant solution was loaded onto AG MP-50 cation exchange resin and the 64 Cu separated from its target material and radiocobalt impurities, produced as part of the irradiation process, using various specific mixtures of HCl/acetone solution. The eluted product was evaporated and picked up in dilute HCl (0.05 M). The chemical purity of 64 Cu was determined by radiolabeling experiments at the highest possible molar activities. RESULTS: Reproducible results were obtained, yielding 3.6 to 8.3 GBq 64 Cu of high radionuclidic and radiochemical purity. The product was labeled to NODAGA-RGD, achieved at up to 500 MBq/nmol, indicating the high chemical purity. In a proof-of-concept in vivo study, 64 Cu-NODAGA-RGD was used for PET imaging of a tumor-bearing mouse. CONCLUSION: The chemical separation devised to produce high-quality 64 Cu proved to be robust and reproducible. The concept can be used at medical cyclotrons utilizing a solid target station, such that 64 Cu can be used at hospitals for PET imaging.


Subject(s)
Copper Radioisotopes/isolation & purification , Radiochemistry/methods , Animals , Copper Radioisotopes/chemistry , Isotope Labeling , Isotopes/chemistry , Mice , Nickel/chemistry , Positron Emission Tomography Computed Tomography
3.
Bioconjug Chem ; 28(9): 2372-2383, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28898054

ABSTRACT

The development of (radio)pharmaceuticals with favorable pharmacokinetic profiles is crucial for allowing the optimization of the imaging or therapeutic potential and the minimization of undesired side effects. The aim of this study was, therefore, to evaluate and compare three different plasma protein binders (PPB-01, PPB-02, and PPB-03) that are potentially useful in combination with (radio)pharmaceuticals to enhance their half-life in the blood. The entities were functionalized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator via a l-lysine and ß-alanine linker moiety using solid-phase peptide chemistry and labeled with 177Lu (T1/2 = 6.65 days), a clinically established radiometal. The binding capacities of these radioligands and 177Lu-DOTA were evaluated using human plasma and solutions of human serum albumin (HSA), human α1-acid glycoprotein (α1-AGP), and human transthyretin (hTTR) by applying an ultrafiltration assay. 177Lu-DOTA-PPB-01 and 177Lu-DOTA-PPB-02 bound to a high and moderate extent to human plasma proteins (>90% and ∼70%, respectively), whereas the binding to hTTR was considered negligible (<10%). 177Lu-DOTA-PPB-03 showed almost complete binding to human plasma proteins (>90%) with a high fraction bound to hTTR (∼50%). Plasma protein binding of the 177Lu-DOTA complex, which was used as a control, was not observed (<1%). 177Lu-DOTA-PPB-01 and 177Lu-DOTA-PPB-02 were both displaced (>80%) from HSA by ibuprofen, specific for Sudlow's binding site II and coherent with the aromatic structures, and >80% by their respective binding entities. 177Lu-DOTA-PPB-03 was displaced from hTTR by the site-marker l-thyroxine (>60%) and by its binding entity PPB-03* (>80%). All three radioligands were investigated with regard to the in vivo blood clearance in normal mice. 177Lu-DOTA-PPB-01 showed the slowest blood clearance (T1/2,ß: >15 h) followed by 177Lu-DOTA-PPB-03 (T1/2,ß: ∼2.33 h) and 177Lu-DOTA-PPB-02 (T1/2,ß: ∼1.14 h), which was excreted relatively fast. Our results confirmed the high affinity of the 4-(4-iodophenyl)-butyric acid entity (PPB-01) to plasma proteins, while replacement of the halogen by an ethynyl entity (PPB-02) reduced the plasma protein binding significantly. An attractive approach is the application of the transthyretin binder (PPB-03), which shows high affinity to hTTR. Future studies in our laboratory will be focused on the application of these binding entities in combination with clinically relevant targeting agents for diagnostic and therapeutic purposes in nuclear medicine.


Subject(s)
Blood Proteins/metabolism , Lutetium/metabolism , Radiopharmaceuticals/metabolism , Animals , Female , Humans , Ligands , Lutetium/chemistry , Lutetium/pharmacokinetics , Mice, Inbred BALB C , Prealbumin/metabolism , Protein Binding , Radioisotopes/chemistry , Radioisotopes/metabolism , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Single Photon Emission Computed Tomography Computed Tomography/methods , Thyroxine/metabolism , Tissue Distribution
4.
EJNMMI Radiopharm Chem ; 1(1): 8, 2017.
Article in English | MEDLINE | ID: mdl-29564385

ABSTRACT

BACKGROUND: Recently, 44Sc (T1/2 = 3.97 h, Eß+av = 632 keV, I = 94.3 %) has emerged as an attractive radiometal candidate for PET imaging using DOTA-functionalized biomolecules. The aim of this study was to investigate the potential of using NODAGA for the coordination of 44Sc. Two pairs of DOTA/NODAGA-derivatized peptides were investigated in vitro and in vivo and the results obtained with 44Sc compared with its 68Ga-labeled counterparts.DOTA-RGD and NODAGA-RGD, as well as DOTA-NOC and NODAGA-NOC, were labeled with 44Sc and 68Ga, respectively. The radiopeptides were investigated with regard to their stability in buffer solution and under metal challenge conditions using Fe3+ and Cu2+. Time-dependent biodistribution studies and PET/CT imaging were performed in U87MG and AR42J tumor-bearing mice. RESULTS: Both RGD- and NOC-based peptides with a DOTA chelator were readily labeled with 44Sc and 68Ga, respectively, and remained stable over at least 4 half-lives of the corresponding radionuclide. In contrast, the labeling of NODAGA-functionalized peptides with 44Sc was more challenging and the resulting radiopeptides were clearly less stable than the DOTA-derivatized matches. 44Sc-NODAGA peptides were clearly more susceptible to metal challenge than 44Sc-DOTA peptides under the same conditions. Instability of 68Ga-labeled peptides was only observed if they were coordinated with a DOTA in the presence of excess Cu2+. Biodistribution data of the 44Sc-labeled peptides were largely comparable with the data obtained with the 68Ga-labeled counterparts. It was only in the liver tissue that the uptake of 68Ga-labeled DOTA compounds was markedly higher than for the 44Sc-labeled version and this was also visible on PET/CT images. The 44Sc-labeled NODAGA-peptides showed a similar tissue distribution to those of the DOTA peptides without any obvious signs of in vivo instability. CONCLUSIONS: Although DOTA revealed to be the preferred chelator for stable coordination of 44Sc, the data presented in this work indicate the possibility of using NODAGA in combination with 44Sc. In view of a clinical study, thorough investigations will be necessary regarding the labeling conditions and storage solutions in order to guarantee sufficient stability of 44Sc-labeled NODAGA compounds.

5.
Mol Pharm ; 13(6): 1979-87, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27145400

ABSTRACT

A number of folate-based radioconjugates have been synthesized and evaluated for nuclear imaging purposes of folate receptor (FR)-positive tumors and potential therapeutic application. A common shortcoming of radiofolates is, however, a significant accumulation of radioactivity in the kidneys. This situation has been faced by modifying the folate conjugate with an albumin-binding entity to increase the circulation time of the radiofolate, which led to significantly improved tumor-to-kidney ratios. The aim of this study was to develop an albumin-binding folate conjugate with a NODAGA-chelator (rf42) for labeling with (64)Cu and (68)Ga, allowing application for PET imaging. The folate conjugate rf42 was synthesized in 8 steps, with an overall yield of 5%. Radiolabeling with (64)Cu and (68)Ga was carried out at room temperature within 10 min resulting in (64)Cu-rf42 and (68)Ga-rf42 with >95% radiochemical purity. (64)Cu-rf42 and (68)Ga-rf42 were stable (>95% intact) in phosphate-buffered saline over more than 4 half-lives of the corresponding radionuclide. In vitro, the plasma protein-bound fraction of (64)Cu-rf42 and (68)Ga-rf42 was determined to be >96%. Cell experiments proved FR-specific uptake of both radiofolates, as it was reduced to <1% when KB tumor cells were coincubated with excess folic acid. In vivo, high accumulation of (64)Cu-rf42 and (68)Ga-rf42 was found in KB tumors of mice (14.52 ± 0.99% IA/g and 11.92 ± 1.68% IA/g, respectively) at 4 h after injection. The tumor-to-kidney ratios were in the range of 0.43-0.55 over the first 4 h of investigation. At later time points (up to 72 h p.i. of (64)Cu-rf42) the tumor-to-kidney ratio increased to 0.73. High-quality PET/CT images were obtained 2 h after injection of (64)Cu-rf42 and (68)Ga-rf42, respectively, allowing distinct visualization of tumors and kidneys. Comparison of PET/CT images obtained with (64)Cu-rf42 and a (64)Cu-labeled DOTA-folate conjugate (cm10) clearly proved the superiority of NODAGA for stable coordination of (64)Cu. (64)Cu-cm10 showed high liver uptake, most probably as a consequence of released (64)Cu(2+). The data reported in this study clearly proved the promising features of (64)Cu-rf42, particularly in terms of favorable tumor-to-kidney ratios. The relatively long half-life of (64)Cu (T1/2 = 12.7 h) matches well with the enhanced circulation time of the albumin-binding NODAGA-folate, allowing PET imaging at longer time points after injection than is possible when using (68)Ga (T1/2 = 68 min).


Subject(s)
Acetates/chemistry , Albumins/chemistry , Folic Acid/chemistry , Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Radiopharmaceuticals/chemistry , Animals , Chelating Agents/chemistry , Half-Life , Humans , KB Cells , Mice , Mice, Nude , Positron-Emission Tomography/methods , Radiochemistry/methods
6.
Molecules ; 15(9): 6205-16, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20877217

ABSTRACT

Two new 2-(2´-hydroxyaryl)benzotriazole derivatives were synthesized and studied by photophysical and photochemical techniques in order to assess their ability to act as UV-filters. The absorption and emission properties of both compounds were determined in solvents of different polarity. In non polar solvent, a photoinduced excited state intramolecular proton transfer was established leading to efficient non radiative dissipation of UV-energy. In addition, the compounds considered were photostable under irradiation with simulated sunlight.


Subject(s)
Photochemical Processes/drug effects , Triazoles/chemical synthesis , Ultraviolet Rays , Filtration , Hydrophobic and Hydrophilic Interactions , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...