Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 406(6797): 716-8, 2000 Aug 17.
Article in English | MEDLINE | ID: mdl-10963594

ABSTRACT

Modern birds have markedly foreshortened tails and their body mass is centred anteriorly, near the wings. To provide stability during powered flight, the avian centre of mass is far from the pelvis, which poses potential balance problems for cursorial birds. To compensate, avians adapted to running maintain the femur subhorizontally, with its distal end situated anteriorly, close to the animal's centre of mass; stride generation stems largely from parasagittal rotation of the lower leg about the knee joint. In contrast, bipedal dinosaurs had a centre of mass near the hip joint and rotated the entire hindlimb during stride generation. Here we show that these contrasting styles of cursoriality are tightly linked to longer relative total hindlimb length in cursorial birds than in bipedal dinosaurs. Surprisingly, Caudipteryx, described as a theropod dinosaur, possessed an anterior centre of mass and hindlimb proportions resembling those of cursorial birds. Accordingly, Caudipteryx probably used a running mechanism more similar to that of modern cursorial birds than to that of all other bipedal dinosaurs. These observations provide valuable clues about cursoriality in Caudipteryx, but may also have implications for interpreting the locomotory status of its ancestors.


Subject(s)
Biological Evolution , Birds , Animals , Birds/anatomy & histology , Femur/anatomy & histology , Hindlimb/anatomy & histology , Locomotion , Reptiles/anatomy & histology
2.
Science ; 236(4799): 243, 1987 Apr 17.
Article in English | MEDLINE | ID: mdl-3563498
3.
Science ; 192(4244): 1123-5, 1976 Jun 11.
Article in English | MEDLINE | ID: mdl-17748675

ABSTRACT

It is suggested that the plates along the arched back and tail of Stegosaurus served an important thermoregulatory function as forced convection "fins." Wind tunnel experiments on finned models, internal heat conduction calculations, and direct observations of the morphology and internal structure of stegosaur plates support this hypothesis, demonstrating the comparative effectiveness of the plates as heat dissipaters, controllable through input blood flow rate, temperature, and body orientation (with respect to wind).

SELECTION OF CITATIONS
SEARCH DETAIL
...