Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 11(477)2019 01 30.
Article in English | MEDLINE | ID: mdl-30700577

ABSTRACT

Many solid cancers contain dysfunctional immune microenvironments. Immune system modulators that initiate responses to foreign pathogens could be promising candidates for reigniting productive responses toward tumors. Interleukin-1 (IL-1) and IL-12 cytokine family members cooperate at barrier tissues after microbial invasion, in human inflammatory diseases, and in antitumoral immunity. IL-36γ, in classic alarmin fashion, acts in damaged tissues, whereas IL-23 centrally coordinates immune responses to danger signals. In this study, direct intratumoral delivery of messenger RNAs (mRNAs) encoding these cytokines produced robust anticancer responses in a broad range of tumor microenvironments. The addition of mRNA encoding the T cell costimulator OX40L increased complete response rates in treated and untreated distal tumors compared to the cytokine mRNAs alone. Mice exhibiting complete responses were subsequently protected from tumor rechallenge. Treatments with these mRNA mixtures induced downstream cytokine and chemokine expression, and also activated multiple dendritic cell (DC) and T cell types. Consistent with this, efficacy was dependent on Batf3-dependent cross-presenting DCs and cytotoxic CD8+ T cells. IL-23/IL-36γ/OX40L triplet mRNA mixture triggered substantial immune cell recruitment into tumors, enabling effective tumor destruction irrespective of previous tumoral immune infiltrates. Last, combining triplet mRNA with checkpoint blockade led to efficacy in models otherwise resistant to systemic immune checkpoint inhibition. Human cell studies showed similar cytokine responses to the individual components of this mRNA mixture, suggesting translatability of immunomodulatory activity to human patients.


Subject(s)
Immunity , Interleukin-1/genetics , Interleukin-23/genetics , Neoplasms/immunology , OX40 Ligand/genetics , RNA, Messenger/administration & dosage , Animals , Cell Proliferation , Disease Models, Animal , Humans , Inflammation/pathology , Interleukin-1/metabolism , Interleukin-23/metabolism , Lymph Nodes/pathology , Lymphocyte Activation/immunology , Mice , OX40 Ligand/metabolism , Tissue Distribution , Tumor Microenvironment/immunology
2.
PLoS One ; 9(8): e105886, 2014.
Article in English | MEDLINE | ID: mdl-25162504

ABSTRACT

Colon cancer is the second most common cause of cancer mortality in the Western world with metastasis commonly present at the time of diagnosis. Screening for propagation and metastatic behavior in a novel chimeric-mouse colon cancer model, driven by mutant p53 and ß-Catenin, led to the identification of a unique, invasive adenocarcinoma. Comparison of the genome of this tumor, CB42, with genomes from non-propagating tumors by array CGH and sequencing revealed an amplicon on chromosome five containing CDK6 and CDK14, and a KRAS mutation, respectively. Single agent small molecule inhibition of either CDK6 or MEK, a kinase downstream of KRAS, led to tumor growth inhibition in vivo whereas combination therapy not only led to regression of the subcutaneous tumors, but also near complete inhibition of lung metastasis; thus, genomic analysis of this tumor led to effective, individualized treatment.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Lung Neoplasms , Mutation , Neoplasm Proteins , Neoplasms, Experimental , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Animals , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy
3.
BMC Biotechnol ; 7: 83, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-18045466

ABSTRACT

BACKGROUND: Virus-mediated delivery of therapeutic transgenes to the inflamed colon holds a great potential to serve as an effective therapeutic strategy for inflammatory bowel disease, since local, long-term expression of the encoded therapeutic proteins in the colorectal system is potentially achievable. Viral vectors, derived from adeno-associated virus (AAV), should be very useful for such therapeutic strategies, particularly because they can establish long-term expression of transgenes. However, few studies have been carried out to investigate the ability of AAV-based vectors to transduce the inflamed colon. RESULTS: AAV, derived from adeno-associated virus serotype 2 (AAV2), showed a limited ability to transduce colonic cell lines in vitro when used in free form. No appreciable enhancement of the transduction efficiency was seen when AAV2 particles were attached stably to the surfaces of microbeads and delivered to target cells in the form of AAV2-microbead conjugates. However, the transduction efficiency of these colonic cell lines was enhanced substantially when a lectin, concanavalin A (Con A), was co-attached to the microbead surfaces, to which AAV2 particles had been conjugated. This considerable infectivity enhancement of AAV2-microbead conjugates by the co-attachment of Con A may be derived from the fact that Con A binds to alpha-D-mannosyl moieties that are commonly and abundantly present in cell-surface carbohydrate chains, allowing the conjugates to associate stably with target cells. Intracolonical administration of free AAV2 or AAV2-microbead conjugates without Con A into a mouse colitis model by enema showed very poor transduction of the colonic tissue. In contrast, the delivery of AAV2 in the form of AAV2-microbead conjugates bearing Con A resulted in efficient transduction of the inflamed colon. CONCLUSION: AAV2-microbead conjugates bearing Con A can serve as efficient gene transfer agents both for poorly permissive colonic cell lines in vitro and for the inflamed colon in a mouse colitis model. This efficient transduction system for the inflamed colon should be useful for the development of gene therapy strategies for inflammatory bowel disease.


Subject(s)
Colitis/immunology , Colitis/virology , Colon/immunology , Colon/virology , Dependovirus/genetics , Signal Transduction/immunology , Transfection/methods , Animals , Cell Line , Colitis/drug therapy , Concanavalin A/chemistry , Drug Carriers/chemistry , Genetic Therapy/methods , Genetic Vectors/genetics , Mice , Microspheres
4.
FEBS Lett ; 516(1-3): 197-200, 2002 Apr 10.
Article in English | MEDLINE | ID: mdl-11959132

ABSTRACT

A chimeric protein, consisting of streptavidin fused to a cyclic decapeptide with potent inhibitory activity for matrix metalloproteinases (MMP), has been produced in Escherichia coli and purified. The purified chimera formed a tetramer and showed full biotin-binding ability. The chimera was also capable of both binding to MMP-2 and inhibiting its activity. Thus, both the streptavidin moiety and the decapeptide of the chimera are fully functional. This bifunctional nature of the chimera should facilitate the application of the decapeptide since the streptavidin moiety can be used as a specific conjugation site for almost any materials upon biotinylation.


Subject(s)
Matrix Metalloproteinase Inhibitors , Oligopeptides , Protease Inhibitors , Amino Acid Sequence , Humans , Neoplasms/diagnosis , Oligopeptides/chemistry , Protease Inhibitors/chemistry , Recombinant Fusion Proteins/chemistry , Streptavidin
SELECTION OF CITATIONS
SEARCH DETAIL
...