Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 230, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081024

ABSTRACT

Grand Canonical Monte Carlo is an important method for performing molecular-level simulations and assisting the study and development of nanoporous materials for gas capture applications. These simulations are based on the use of force fields and partial charges to model the interaction between the adsorbent molecules and the solid framework. The choice of the force field parameters and partial charges can significantly impact the results obtained, however, there are very few databases available to support a comprehensive impact evaluation. Here, we present a database of simulations of CO2 and N2 adsorption isotherms on 690 metal-organic frameworks taken from the CoRE MOF 2014 database. We performed simulations with two force fields (UFF and DREIDING), six partial charge schemes (no charges, Qeq, EQeq, MPNN, PACMOF, and DDEC), and three temperatures (273, 298, 323 K). The resulting isotherms compose the Charge-dependent, Reproducible, Accessible, Forcefield-dependent, and Temperature-dependent Exploratory Database (CRAFTED) of adsorption isotherms.

2.
Nat Mater ; 21(12): 1419-1425, 2022 12.
Article in English | MEDLINE | ID: mdl-36229651

ABSTRACT

The heat capacity of a material is a fundamental property of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications, the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine learning approach, trained on density functional theory simulations, to accurately predict the heat capacity of these materials, that is, zeolites, metal-organic frameworks and covalent-organic frameworks. The accuracy of our prediction is confirmed with experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials, the heat requirement is reduced by as much as a factor of two using the correct heat capacity.


Subject(s)
Metal-Organic Frameworks , Nanopores , Coal , Hot Temperature , Power Plants , Carbon
3.
J Chem Phys ; 155(7): 074702, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418941

ABSTRACT

We explore the applicability of the lattice model and dynamic mean field theory as a computationally efficient tool to study transport across heterogeneous porous media, such as mixed matrix membranes. As a starting point and to establish some basic definitions of properties analogous to those in the off-lattice systems, we consider transport across simple models of porous materials represented by a slit pore in a chemical potential gradient. Using this simple model, we investigate the distribution of density and flux under steady state conditions, define the permeability across the system, and explore how this property depends on the length of the pore and the solid-fluid interactions. Among other effects, we observe that the flux in the system goes through a maximum as the solid-fluid interaction is varied from weak to strong. This effect is dominated by the behavior of the fluid near the walls and is also confirmed by off-lattice molecular dynamics simulations. We further extend this study to explore transport across heterogeneous slit pore channels composed of two solids with different values of solid-fluid interaction strengths. We demonstrate that the lattice models and dynamic mean field theory provide a useful framework to pose questions on the accuracy and applicability of the classical theories of transport across heterogeneous porous systems.

4.
Chem Rev ; 121(17): 10666-10741, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34374527

ABSTRACT

Computational screening methods have changed the way new materials and processes are discovered and designed. For adsorption-based gas separations and carbon capture, recent efforts have been directed toward the development of multiscale and performance-based screening workflows where we can go from the atomistic structure of an adsorbent to its equilibrium and transport properties at different scales, and eventually to its separation performance at the process level. The objective of this work is to review the current status of this new approach, discuss its potential and impact on the field of materials screening, and highlight the challenges that limit its application. We compile and introduce all the elements required for the development, implementation, and operation of multiscale workflows, hence providing a useful practical guide and a comprehensive source of reference to the scientific communities who work in this area. Our review includes information about available materials databases, state-of-the-art molecular simulation and process modeling tools, and a complete catalogue of data and parameters that are required at each stage of the multiscale screening. We thoroughly discuss the challenges associated with data availability, consistency of the models, and reproducibility of the data and, finally, propose new directions for the future of the field.

5.
J Am Chem Soc ; 137(18): 5969-79, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25909685

ABSTRACT

We explore the effect of fluorine doping on hydrophobicity of nanoporous silicon carbide-derived carbon (SiCDC), and investigate the underlying barriers for adsorption and diffusion of water vapor and CO2 in the fluorinated and nonfluorinated structures. We develop atomistic models of fluorine-doped SiCDC at three different levels of fluorination, based on a hybrid reverse Monte Carlo constructed model of SiCDC, and develop a novel first-principles force field for the simulation of adsorption and transport of water and CO2 in the fluorine-doped carbon materials. We demonstrate an apparent dual effect of fluorination, showing that while fluorination generates more hydrophilic carbon surfaces, they actually act as more hydrophobic structures due to enhanced energy barriers in the disordered network of microporous carbon. While an increase in adsorption energy and in water uptake is seen for fluorine-doped carbon, large internal free energy barriers as well as the results of MD simulations demonstrate that the increased adsorption is kinetically limited and not experimentally observable on practical time scales. We show that an increase in apparent hydrophobicity due to fluorination is mediated by larger free energy barriers arising from stronger binding of fluid molecules inside the pore network, as opposed to repulsion or steric hindrance to the diffusion of molecules through narrow pore entries. For carbon dioxide, adsorption enthalpies and activation energy barriers are both decreased on fluorination, indicating weakened solid-fluid binding energies in the fluorinated systems.

6.
J Phys Chem C Nanomater Interfaces ; 118(22): 11784-11798, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24932319

ABSTRACT

We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2-3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC.

SELECTION OF CITATIONS
SEARCH DETAIL
...