Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Planta ; 260(1): 15, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829528

ABSTRACT

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Subject(s)
Flowers , Odorants , Pollen , Pollination , Solanum , Solanum/physiology , Solanum/chemistry , Pollination/physiology , Flowers/physiology , Flowers/chemistry , Pollen/physiology , Pollen/chemistry , Odorants/analysis , Animals , Bees/physiology
2.
Pest Manag Sci ; 80(7): 3160-3171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38348748

ABSTRACT

BACKGROUND: Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an economically important pest of soft and stone fruit crops. The aim of this study was to identify repellents, formulated in dispensers, which could protect crops from D. suzukii. Fourteen potential repellents were screened against summer- and winter-morph D. suzukii through electroantennography and behavioural bioassays. Repellents effective in the laboratory were tested in polytunnels to determine their efficacy in reducing catches in fruit-baited traps. Further trials of three potential repellents were conducted to determine the distances over which repellent dispensers could reduce D. suzukii emergence in a strawberry crop. RESULTS: All 14 chemicals screened were detected by the antennae of both D. suzukii morphs. Hexyl acetate and geosmin both elicited a significantly greater corrected EAG response in summer morphs than winter morphs. Summer-morph D. suzukii were repelled by butyl acetate, ethyl propionate, methyl N,N-dimethyl anthranilate, geosmin, methyl salicylate, DEET and benzaldehyde at one or more doses test in laboratory bioassays. Winter morphs were repelled by ethyl propionate, methyl anthranilate, methyl N,N-dimethyl anthranilate, DEET, benzaldehyde and butyl anthranilate at one or more of the doses tested in the laboratory. Ethyl propionate, methyl N,N-dimethylanthranilate and benzaldehyde repelled both morphs from fruit-baited traps in polytunnel trapping trials. Ethyl propionate and methyl N,N-dimethylanthranilate reduced emergence of D. suzukii in a strawberry crop over 3-5 m. CONCLUSIONS: Ethyl propionate and methyl N,N-dimethylanthranilate may protect strawberry crops against D. suzukii. Future work should test these repellents in combination with attractants in a 'push-pull' strategy. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Drosophila , Insect Control , Insect Repellents , ortho-Aminobenzoates , Animals , Insect Repellents/pharmacology , Drosophila/drug effects , Drosophila/physiology , ortho-Aminobenzoates/pharmacology , Insect Control/methods , Propionates/pharmacology , Female , Male , Fragaria
3.
Insects ; 13(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36005313

ABSTRACT

The worldwide invasive insect pest, Drosophila suzukii Matsumura (spotted-wing Drosophila), lays eggs in soft and stone fruit before harvest. Hatched larvae cause fruit collapse and significant economic losses. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions due to regulatory restrictions and the risk of insecticide resistance developing. We showed before that D. suzukii were deterred from laying eggs on artificial media previously visited by its sister species-Drosophila melanogaster. In the current study, laboratory choice test experiments were conducted to identify which D. melanogaster life stage (eggs, larvae, or adult) deterred D. suzukii oviposition. We demonstrated that the presence of live D. melanogaster larvae on the egg-laying media consistently deterred D. suzukii oviposition. Drosophila melanogaster cuticular hydrocarbons (CHCs) were examined as candidate for the oviposition deterrent. CHCs of larval and adult D. melanogaster and D. suzukii were analyzed. In both species, the composition of the CHCs of larvae was similar to that of adults, although quantities present were much lower. Furthermore, the CHC profiles of the two species were markedly different. However, when assayed as deterrents in the laboratory choice test experiment, CHC extracts from D. melanogaster did not deter oviposition by D. suzukii.

4.
J Chem Ecol ; 48(5-6): 479-490, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35771405

ABSTRACT

The canola flower midge, Contarinia brassicola Sinclair (Diptera: Cecidomyiidae), is a newly-described species that induces galls on canola, Brassica napus Linnaeus and Brassica rapa Linnaeus (Brassicaceae). Identification of the sex pheromone of C. brassicola is essential to developing monitoring tools to elucidate the geographic range and hosts of this new pest, and the extent to which it threatens the $30 billion Canadian canola industry. The aim of this study was to identify and synthesize the female-produced sex pheromone of C. brassicola and demonstrate its effectiveness in attracting males to traps in the field. Two peaks were identified through GC-EAG analysis of female-produced volatiles which elicited electrophysiological responses in male antennae. These peaks were initially characterized through GC-MS and synthesis as 2,7-diacetoxynonane (major component) and 2-acetoxynonane (minor component), and the racemic compounds elicited EAG responses in male antennae. All four stereoisomers of 2,7-diacetoxynonane were synthesized and the naturally-produced compound was shown to be primarily the (2R,7S)-isomer by analysis on an enantioselective GC column, with a small amount of (2R,7R)-2,7-diacetoxynonane also present. The configuration of the minor component could not be determined because of the small amount present, but this was assumed to be (2R)-2-acetoxynonane by comparison with the configuration of the other two components. In field trials, none of the four stereoisomers of 2,7-diacetoxynonane, presented individually or as a racemic mixture, was attractive to male C. brassicola. However, dispensers loaded with a 10 µg:1 µg blend of (2R,7S)- and (2R,7R)-2,7-diacetoxynonane caught large numbers of male C. brassicola and significantly more than other blends tested. The addition of 0.5 µg of (2R)-2-acetoxynonane to this blend further increased the number of males caught. In future work, we will seek to identify the optimum trapping protocol for the application of the pheromone in monitoring and surveillance.


Subject(s)
Brassica napus , Sex Attractants , Canada , Flowers , Pheromones , Sex Attractants/pharmacology
5.
J Chem Ecol ; 48(3): 289-301, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34762208

ABSTRACT

The coconut rhinoceros beetle, Oryctes rhinoceros (Linnaeus 1758) (Coleoptera: Scarabaeidae: Dynastinae) (CRB), is endemic to tropical Asia where it damages both coconut and oil palm. A new invasion by CRB occurred on Guam in 2007 and eradication attempts failed using commonly applied Oryctes rhinoceros nudivirus (OrNV) isolates. This and subsequent invasive outbreaks were found to have been caused by a previously unrecognized haplotype, CRB-G, which appeared to be tolerant to OrNV. The male-produced aggregation pheromone of the endemic, susceptible strain of O. rhinoceros (CRB-S) was previously identified as ethyl 4-methyloctanoate. Following reports from growers that commercial lures containing this compound were not attractive to CRB-G, the aim of this work was to identify the pheromone of CRB-G. Initial collections of volatiles from virgin male and female CRB-G adults from the Solomon Islands failed to show any male- or female-specific compounds as candidate pheromone components. Only after five months were significant quantities of ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by males but not by females. No other male-specific compounds could be detected, in particular methyl 4-methyloctanoate, 4-methyl-1-octanol, or 4-methyl-1-octyl acetate, compounds identified in volatiles from some other species of Oryctes. Ethyl 4-methyloctanoate elicited a strong electroantennogram response from both male and female CRB-G, but these other compounds, including 4-methyloctanoic acid, did not. The enantiomers of ethyl 4-methyloctanoate and 4-methyloctanoic acid were conveniently prepared by enzymatic resolution of the commercially-available acid, and the enantiomers of the acid, but not the ester, could be separated by gas chromatography on an enantioselective cyclodextrin phase. Using this approach, both ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by male CRB-G were shown to be exclusively the (R)-enantiomers whereas previous reports had suggested male O. rhinoceros produced the (S)-enantiomers. However, re-examination of the ester and acid produced by male CRB-S from Papua New Guinea showed that these were also the (R)-enantiomers. In field trapping experiments carried out in the Solomon Islands, both racemic and ethyl (R)-4-methyloctanoate were highly attractive to both male and female CRB-G beetles. The (S)-enantiomer and the corresponding acids were only weakly attractive. The addition of racemic 4-methyloctanoic acid to ethyl 4-methyloctanoate did significantly increase attractiveness, but the addition of (R)- or (S)-4-methyloctanoic acid to the corresponding ethyl esters did not. Possible reasons for the difference in assignment of configuration of the components of the CRB pheromone are discussed along with the practical implications of these results.


Subject(s)
Coleoptera , Animals , Coleoptera/physiology , Female , Guam , Male , Octanols , Perissodactyla , Pheromones/pharmacology
6.
Curr Biol ; 31(18): 4127-4131.e4, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34324835

ABSTRACT

Caffeine is a widely occurring plant defense chemical1,2 that occurs in the nectar of some plants, e.g., Coffea or Citrus spp., where it may influence pollinator behavior to enhance pollination.3,4 Honey bees fed caffeine form longer lasting olfactory memory associations,5 which could give plants with caffeinated nectar an adaptive advantage by inducing more visits to flowers. Caffeinated free-flying bees show enhanced learning performance6 and are more likely to revisit a caffeinated target feeder or artificial flower,7-9 although it is not clear whether improved memory of the target cues or the perception of caffeine as a reward is the cause. Here, we show that inexperienced bumble bees (Bombus terrestris) locate new food sources emitting a learned floral odor more consistently if they have been fed caffeine. In laboratory arena tests, we fed bees a caffeinated food alongside a floral odor blend (priming) and then used robotic experimental flowers10 to disentangle the effects of caffeine improving memory for learned food-associated cues versus caffeine as a reward. Inexperienced bees primed with caffeine made more initial visits to target robotic flowers emitting the target odor compared to control bees or those primed with odor alone. Caffeine-primed bees tended to improve their floral handling time faster. Although the effects of caffeine were short lived, we show that food-locating behaviors in free-flying bumble bees can be enhanced by caffeine provided in the nest. Consequently, there is potential to redesign commercial colonies to enhance bees' forage focus or even bias bees to forage on a specific crop.


Subject(s)
Odorants , Plant Nectar , Animals , Bees , Flowers , Pollination , Smell
7.
J Chem Ecol ; 47(4-5): 394-405, 2021 May.
Article in English | MEDLINE | ID: mdl-33844148

ABSTRACT

Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is a tropical mirid bug used as a biocontrol agent in protected crops, including tomatoes. Although N. tenuis predates important insect pests, especially whitefly, it also causes damage by feeding on tomato plants when prey populations decline, resulting in significant economic losses for growers. The pest is now established in some all-year-round tomato crops in Europe and control measures involve the application of pesticides which are incompatible with current IPM programs. As part of future IPM strategies, the pheromone of N. tenuis was investigated. Volatile collections were made from groups and individuals of mated and unmated, females and males. In analyses of these collections by gas chromatography coupled with electroantennographic (EAG) recording from antennae of male bugs, two EAG-active components were detected and identified as 1-octanol and octyl hexanoate. Unlike other mirids, both male and female N. tenuis produced the two compounds, before and after mating, and both sexes gave EAG responses to both compounds. Furthermore, only octyl hexanoate was detected in whole body solvent washes from both sexes. These compounds are not related to the derivatives of 3-hydroxybutyrate esters found as pheromone components in other members of the Bryocrinae sub-family, and the latter could not be detected in volatiles from N. tenuis and did not elicit EAG responses. Nevertheless, experiments carried out in commercial glasshouses showed that traps baited with a blend of the synthetic pheromone components caught essentially only male N. tenuis, and significantly more than traps baited with octyl hexanoate alone. The latter caught significantly more N. tenuis than unbaited traps which generally caught very few bugs. Traps at plant height caught more N. tenuis males than traps 1 m above or at the base of the plants. The trap catches provided an indication of population levels of N. tenuis and were greatly reduced following an application of insecticide.


Subject(s)
Heteroptera/chemistry , Sex Attractants/analysis , Solanum lycopersicum/metabolism , Volatile Organic Compounds/analysis , 1-Octanol/analysis , Animals , Caproates/analysis , Female , Gas Chromatography-Mass Spectrometry , Heteroptera/metabolism , Insect Control , Male , Sexual Behavior, Animal
8.
Pest Manag Sci ; 77(6): 2747-2755, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33506968

ABSTRACT

BACKGROUND: European tarnished plant bug, Lygus rugulipennis (Heteroptera: Miridae), is a polyphagous pest damaging a range of arable and horticultural crops. Management is reliant upon chemical insecticides for control. These studies developed a synthetic semiochemical push-pull control strategy to reduce numbers of L. rugulipennis and subsequent fruit damage in UK strawberry crops. Using a series of small field experiments and testing in commercial strawberry crops we explored the efficacy of hexyl butyrate (HB) as the push element and female sex pheromone combined with phenylacetaldehyde as the pull element. RESULTS: HB dispensers placed 1.0, 3.5, 5.0 and 7.0 m from all-green Unitraps baited with L. rugulipennis female sex pheromone significantly reduced male catches by 99%, 54%, 44% and 20% compared with untreated control, respectively. Subsequently, in commercial crops, HB dispensers at 2-m intervals along the crop row (the push) combined with a perimeter pull reduced numbers of adult and nymph L. rugulipennis by up to 80% in organic strawberry crops compared with the untreated control. Finally, the push-pull system halved fruit damage (8%) compared with untreated areas (16%) in conventional crops. In organic strawberry crops, 90% of untreated strawberries had some mirid damage compared with only 41-51% in push-pull-treated areas. CONCLUSION: To our knowledge, this is the first demonstration of a push-pull approach using synthetic semiochemicals giving a significant reduction in crop damage by mirids and paves the way for non-pesticide control of a range of mirid species on multiple crops. © 2021 Society of Chemical Industry.


Subject(s)
Fragaria , Heteroptera , Sex Attractants , Animals , Female , Male , Nymph , Pheromones/pharmacology
9.
New Phytol ; 230(3): 1169-1184, 2021 05.
Article in English | MEDLINE | ID: mdl-33484583

ABSTRACT

Phytosterols are primary plant metabolites that have fundamental structural and regulatory functions. They are also essential nutrients for phytophagous insects, including pollinators, that cannot synthesize sterols. Despite the well-described composition and diversity in vegetative plant tissues, few studies have examined phytosterol diversity in pollen. We quantified 25 pollen phytosterols in 122 plant species (105 genera, 51 families) to determine their composition and diversity across plant taxa. We searched literature and databases for plant phylogeny, environmental conditions, and pollinator guilds of the species to examine the relationships with pollen sterols. 24-methylenecholesterol, sitosterol and isofucosterol were the most common and abundant pollen sterols. We found phylogenetic clustering of twelve individual sterols, total sterol content and sterol diversity, and of sterol groupings that reflect their underlying biosynthesis pathway (C-24 alkylation, ring B desaturation). Plants originating in tropical-like climates (higher mean annual temperature, lower temperature seasonality, higher precipitation in wettest quarter) were more likely to record higher pollen sterol content. However, pollen sterol composition and content showed no clear relationship with pollinator guilds. Our study is the first to show that pollen sterol diversity is phylogenetically clustered and that pollen sterol content may adapt to environmental conditions.


Subject(s)
Phytosterols , Sterols , Animals , Insecta , Phylogeny , Pollen
10.
J Chem Ecol ; 45(10): 869-878, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31741191

ABSTRACT

Most plant species depend upon insect pollination services, including many cash and subsistence crops. Plants compete to attract those insects using visual cues and floral odor which pollinators associate with a reward. The cacao tree, Theobroma cacao, has a highly specialized floral morphology permitting pollination primarily by Ceratopogonid midges. However, these insects do not depend upon cacao flowers for their life cycle, and can use other sugar sources. To understand how floral cues mediate pollination in cacao we developed a method for rearing Ceratopogonidae through several complete lifecycles to provide material for bioassays. We carried out collection and analysis of cacao floral volatiles, and identified a bouquet made up exclusively of saturated and unsaturated, straight-chain hydrocarbons, which is unusual among floral odors. The most abundant components were tridecane, pentadecane, (Z)-7-pentadecene and (Z)-8-heptadecene with a heptadecadiene and heptadecatriene as minor components. We presented adult midges, Forcipomyia sp. (subgen. Forcipomyia), Culicoides paraensis and Dasyhelea borgmeieri, with natural and synthetic cacao flower odors in choice assays. Midges showed weak attraction to the complete natural floral odor in the assay, with no significant evidence of interspecific differences. This suggests that cacao floral volatiles play a role in pollinator behavior. Midges were not attracted to a synthetic blend of the above four major components of cacao flower odor, indicating that a more complete blend is required for attraction. Our findings indicate that cacao pollination is likely facilitated by the volatile blend released by flowers, and that the system involves a generalized odor response common to different species of Ceratopogonidae.


Subject(s)
Cacao/chemistry , Ceratopogonidae/physiology , Volatile Organic Compounds/chemistry , Animals , Cacao/metabolism , Ceratopogonidae/drug effects , Flowers/chemistry , Flowers/metabolism , Gas Chromatography-Mass Spectrometry , Pollen/chemistry , Pollen/metabolism , Pollination/drug effects , Smell , Volatile Organic Compounds/pharmacology
11.
Planta ; 250(1): 367-379, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31069523

ABSTRACT

MAIN CONCLUSION: This study provides first evidence of a thrips species pollinating Sambucus nigra and describes how interactions are driven by plant biochemical signalling and moderated by temporal changes in floral chemistry. The concept of flower-feeding thrips as pollinating insects in temperate regions is rarely considered as they are more frequently regarded to be destructive florivores feeding on pollen and surrounding plant tissue. Combining laboratory and field-based studies we examined interactions between Sambucus nigra (elderflower) and Thrips major within their native range to ascertain the role of thrips in the pollination of this species and to determine if floral chemicals mediated flower visits. If thrips provide a pollination service to S. nigra, then this will likely manifest in traits that attract the pollinating taxa at temporally critical points in floral development. T. major were highly abundant in inflorescences of S. nigra, entering flowers when stigmas were pollen-receptive and anthers were immature. When thrips were excluded from the inflorescences, fruit-set failed. Linalool was the major component of the inflorescence headspace with peak abundance coinciding with the highest number of adult thrips visiting flowers. Thrips were absent in buds and their numbers declined again in senescing flowers inversely correlating with the concentration of cyanogenic glycosides recorded in the floral tissue. Our data show that S. nigra floral chemistry mediates the behaviour of pollen-feeding thrips by attracting adults in high numbers to the flowers at pre-anthesis stage, while producing deterrent compounds prior to fruit development. Taking an integrative approach to studying thrips behaviour and floral biology we provide a new insight into the previously ambiguously defined pollination strategies of S. nigra and provide evidence suggesting that the relationship between T. major and S. nigra is mutualistic.


Subject(s)
Feeding Behavior , Sambucus nigra/chemistry , Signal Transduction , Thysanoptera/physiology , Volatile Organic Compounds/analysis , Animals , Female , Flowers/chemistry , Flowers/growth & development , Flowers/physiology , Inflorescence/chemistry , Inflorescence/growth & development , Inflorescence/physiology , Male , Pollen/chemistry , Pollen/growth & development , Pollen/physiology , Pollination , Reproduction , Sambucus nigra/growth & development , Sambucus nigra/physiology , Symbiosis , Volatile Organic Compounds/metabolism
12.
Front Plant Sci ; 8: 1011, 2017.
Article in English | MEDLINE | ID: mdl-28659954

ABSTRACT

Resistance to sweetpotato weevils (Cylas spp.) has been identified in several sweetpotato (Ipomoea batatas) landraces from East Africa and shown to be conferred by hydroxycinnamic acids that occur on the surface of storage roots. The segregation of resistance in this crop is unknown and could be monitored using these chemical traits as markers for resistance in F1 offspring from breeding programs. For the first time in a segregating population, we quantified the plant chemicals that confer resistance and evaluated levels of insect colonization of the same progeny in field and laboratory studies. We used a bi-parental mapping population of 287 progenies from a cross between I. batatas 'New Kawogo,' a weevil resistant Ugandan landrace and I. batatas 'Beauregard' a North American orange-fleshed and weevil susceptible cultivar. The progenies were evaluated for resistance to sweetpotato weevil, Cylas puncticollis at three field locations that varied climatically and across two seasons to determine how environment and location influenced resistance. To augment our field open-choice resistance screening, each clone was also evaluated in a no choice experiment with weevils reared in the laboratory. Chemical analysis was used to determine whether differences in resistance to weevils were associated with plant compounds previously identified as conferring resistance. We established linkage between field and laboratory resistance to Cylas spp. and sweetpotato root chemistry. The data also showed that resistance in sweetpotato was mediated by root chemicals in most but not all cases. Multi-location trials especially from Serere data provided evidence that the hydroxycinnamic acid esters are produced constitutively within the plants in different clonal genotypes and that the ecological interaction of these chemicals in sweetpotato with weevils confers resistance. Our data suggest that these chemical traits are controlled quantitatively and that ultimately a knowledge of the genetics of resistance will facilitate management of these traits, enhance our understanding of the mechanistic basis of resistance and speed the development of new sweetpotato varieties with resistance to sweetpotato weevil.

13.
J Chem Ecol ; 43(5): 433-442, 2017 May.
Article in English | MEDLINE | ID: mdl-28500568

ABSTRACT

Polyunsaturated hydrocarbons (Type II pheromone components) have been reported to be synergists for unsaturated acetates, alcohols or aldehydes (Type I components) in the sex pheromones of several species of Lepidoptera. However, there is some debate over whether the active components are the hydrocarbons themselves or more volatile degradation products. Extracts of pheromone glands of adult females of the cone moth, Dioryctria mendacella (Lepidoptera: Pyralidae), contain (Z,E)-9,11-tetradecadienyl acetate (ZE9,11-14:Ac) and at least ten times as much (Z,Z,Z,Z,Z)-3,6,9,12,15-pentacosapentaene (ZZZZZ3,6,9,12,15-25:H). The former elicits a strong electroantennogram response from males while no response could be recorded to the latter. In field trapping tests, both compounds were individually unattractive to male D. mendacella moths, but blends of the two compounds containing at least a 10:1 ratio of ZZZZZ3,6,9,12,15-25:H : ZE9,11-14:Ac were highly attractive. The relatively involatile hydrocarbon was shown to be released from the dispensers used and no significant degradation could be detected. Furthermore, blends of ZE9,11-14:Ac and analogs of ZZZZZ3,6,9,12,15-25:H with fewer carbons and/or double bonds that might be expected to produce similar degradation products to ZZZZZ3,6,9,12,15-25:H were unattractive. This indicated a specific response to the hydrocarbon itself, further substantiated by the observation that related hydrocarbons did not interfere with the activity of ZZZZZ3,6,9,12,15-25:H. Thus a three-step conversion of fish oil was used to produce a blend of unsaturated hydrocarbons containing ZZZZZ3,6,9,12,15-25:H as the major component, albeit only 30% of the total, and a blend of this material with ZE9,11-14:Ac was as attractive to male D. mendacella moths as blends with an equivalent amount of the purified material. This mixture of unsaturated hydrocarbons is much cheaper to produce than the pure pentaene, and may be useful in lures for other species using these compounds. Dioryctria mendacella is a major constraint to production of edible pine kernels throughout the Mediterranean region. Pheromone traps will provide a means to improve monitoring of seasonal flight patterns and changes in population abundance of this pest.


Subject(s)
Moths/metabolism , Sex Attractants/chemistry , Animals , Female , Gas Chromatography-Mass Spectrometry , Male , Moths/chemistry , Polyenes/analysis , Polyenes/chemical synthesis , Polyenes/metabolism , Sex Attractants/analysis , Sex Attractants/chemical synthesis , Sex Attractants/metabolism , Stereoisomerism
14.
J Chem Ecol ; 40(1): 71-83, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24390623

ABSTRACT

Mirid bugs (Heteroptera: Miridae) are important pests of many crops worldwide. In previous work by others and ourselves, several species of Lygus bugs were shown to produce blends of three compounds, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal. These have been proposed as components of the female-produced sex pheromones, but attraction of males to synthetic lures has been difficult to demonstrate. We studied the volatiles released by females of four species: Lygus rugulipennis, Lygus pratensis, Lygocoris pabulinus, and Liocoris tripustulatus. Analyses of volatiles from individual, undisturbed insects showed that the three compounds were produced in species-specific blends, by females only, or in greater quantities by females than by males. The three compounds were loaded into pipette tips, which released the defined blends over at least 30 days. Traps baited with the blend for L. rugulipennis caught more males than traps baited with virgin females, with all three compounds required for maximum attractiveness. Traps baited with the specific blends for each of the four species caught males of three of the species, indicating considerable cross-attraction. There is evidence that other, non-chemical factors, such as time-of-day of production of pheromone, contribute to species-specificity of attraction. This is the first report of consistent attraction of Lygus bugs to synthetic lures in the field.


Subject(s)
Behavior, Animal/drug effects , Heteroptera/drug effects , Heteroptera/metabolism , Sex Attractants/biosynthesis , Sex Attractants/pharmacology , Animals , Female , Male , Sex Characteristics , Species Specificity , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology
15.
J Agric Food Chem ; 61(34): 8141-7, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23906084

ABSTRACT

Seven resistant varieties of sweetpotato were compared with three susceptible varieties in field trials and laboratory bioassays and showed that resistance was an active process rather than an escape mechanism, as field resistant varieties also had reduced root damage and oviposition compared with susceptible varieties in the laboratory. Liquid chromatography-mass spectrometry (LC-MS) of root surface and epidermal extracts showed significant variation in the concentration of hexadecyl, heptadecyl, octadecyl, and quinic acid esters of caffeic and coumaric acid, with higher concentrations correlated with resistance. All compounds were synthesized to enable their positive identification. Octadecyl coumarate and octadecyl caffeate applied to the surface of susceptible varieties in laboratory bioassays reduced feeding and oviposition, as observed on roots of resistant varieties, and therefore are implicated in weevil resistance. Segregating populations from breeding programs can use these compounds to identify trait loci for resistance and enable the development of resistant varieties.


Subject(s)
Ipomoea batatas/chemistry , Plant Diseases/parasitology , Plant Extracts/chemistry , Plant Roots/chemistry , Weevils/physiology , Animals , Disease Resistance , Female , Ipomoea batatas/immunology , Ipomoea batatas/parasitology , Male , Oviposition , Plant Diseases/immunology , Plant Extracts/immunology , Plant Roots/immunology , Plant Roots/parasitology , Weevils/growth & development
16.
Pest Manag Sci ; 69(3): 386-96, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22588964

ABSTRACT

BACKGROUND: Red-billed quelea (Quelea quelea) are controlled at breeding colonies and roosts by organophosphate sprays or explosions. Contamination with organophosphates after sprays and with petroleum products and phthalates after explosions was assessed. RESULTS: Concentrations in soil of the organophosphate fenthion the day after sprays were uneven (0-29.5 µg g(-1)), which was attributable to excess depositions at vehicle turning points, incorrect positioning of nozzles and poor equipment maintenance. A laboratory study using field-collected samples provided an estimate of 47 days for the half-life of fenthion. After sprays, fenthion persisted in soil for up to 188 days. High concentrations were detected 5 months after negative results at the same sites, providing indirect evidence of leaching. Concentrations of total petroleum hydrocarbons (TPHs) and phthalates ranged from 0.05 to 130.81 (mean 18.69) µg g(-1) and from 0 to 1.62 (mean 0.55) µg g(-1) respectively in the craters formed by the explosions, but declined to means of 0.753 and 0.027 µg g(-1) at 10 m away. One year after an explosion, mean TPHs of 0.865 and mean phthalates of 0.609 were detected. CONCLUSION: Localisation of high concentrations of fenthion likely to have effects on soil biota could be mitigated by improved spray management. Given a half-life in the soil of 47 days for fenthion and the possibility of its leaching months after applications raises concerns about its acceptability. The pollutants left behind after explosions have been quantified for the first time, and, given their long-term persistence, their continued use poses a threat to environmental health.


Subject(s)
Explosive Agents/chemistry , Organophosphates/chemistry , Passeriformes/growth & development , Rodent Control , Soil Pollutants/chemistry , Animals , Botswana , Explosions , Half-Life , Kinetics , Population Dynamics
17.
J Chem Ecol ; 36(6): 570-83, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20437083

ABSTRACT

The pine sawyer beetle, Monochamus galloprovincialis, is a pest of pine trees in Europe and North Africa. Previously considered a secondary pest of stressed and dying trees, it is now receiving considerable attention as a vector of the pine wood nematode, Bursaphelenchus xylophilus, the causal agent of a lethal wilting disease in susceptible species of pines. Adult beetles are attracted to traps baited with a kairomone blend consisting of a host volatile, alpha-pinene, and two bark beetle pheromone components, ipsenol and 2-methyl-3-buten-2-ol. More recently it has been shown that mature male M. galloprovincialis produce a pheromone that attracts mature females in a laboratory bioassay. Here, volatiles were collected from mature male and female M. galloprovincialis, and a compound produced specifically by mature males was identified as 2-undecyloxy-1-ethanol from its gas chromatographic retention times, its mass spectrum, and by comparison with synthetic standards. The naturally-derived and synthetic compounds elicited electroantennographic responses from both females and males. Sealed polyethylene vials and polyethylene sachets were shown to be effective dispensers with zero-order release, the latter giving a higher release rate than the former. In two field tests, multiple-funnel traps baited with synthetic 2-undecyloxy-1-ethanol caught both female and male M. galloprovincialis, with higher catches at the higher release rate. This compound also synergized the attractiveness of the kairomone blend, the combined mixture catching 80-140% more beetles than the sum of the catches to each bait separately and luring up to two beetles/trap/d in a moderate-density population. We conclude that 2-undecyloxy-1-ethanol is a male-produced aggregation pheromone of M. galloprovincialis. This is the first example of a sex-specific compound in the cerambycid subfamily Lamiinae with significant behavioral activity in the field at a range sufficient to make it a useful trap bait. The possible roles of this pheromone in the chemical ecology of M. galloprovincialis and its potential use in pine wilt disease management are discussed.


Subject(s)
Coleoptera/physiology , Ethanol/analogs & derivatives , Ethers/chemistry , Pheromones/chemistry , Animals , Behavior, Animal/drug effects , Ethanol/chemistry , Ethanol/isolation & purification , Ethanol/pharmacology , Ethers/isolation & purification , Ethers/pharmacology , Female , Gas Chromatography-Mass Spectrometry , Male , Pheromones/isolation & purification , Pheromones/pharmacology , Volatilization
18.
J Chem Ecol ; 35(6): 715-23, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19554372

ABSTRACT

The sex pheromone of the chrysanthemum gall midge, Rhopalomyia longicauda (Diptera: Cecidomyiidae), the most important insect pest in commercial plantations of chrysanthemum, Dendranthema morifolium (Ramat.) Tzvel., in China, was identified, synthesized, and field-tested. Volatile chemicals from virgin females and males were collected on Porapak in China and sent to the United Kingdom for analysis. Coupled gas chromatographic-electroantennographic detection (GC-EAG) analysis of volatile collections from females revealed two compounds that elicited responses from antennae of males. These compounds were not present in collections from males. The major EAG-active compound was identified as 2-butyroxy-8-heptadecene by gas chromatographic (GC) retention indices, mass spectra, in both electron impact and chemical ionization modes, hydrogenation, epoxidation, and derivatization with dimethyldisulfide. The lesser EAG-active compound was identified as the corresponding alcohol. The ratio of butyrate to alcohol in the collections was 1:0.26. Racemic (Z)-8-heptadecen-2-ol and the corresponding butyrate ester were synthesized from (Z)-7-hexadecenyl acetate, and the synthetic compounds found to have identical GC retention indices and mass spectra to those of the natural, female-specific components. Analysis of the volatile collections on an enantioselective cyclodextrin GC column showed the natural pheromone contained (2S,8Z)-2-butyroxy-8-heptadecene. Field tests showed that rubber septa containing racemic (Z)-2-butyroxy-8-heptadecene were attractive to R. longicauda males. The (naturally occurring) S-enantiomer was equally as attractive as the racemate, while the R-enantiomer was not attractive to males, and did not inhibit the activity of the S-enantiomer. The attractiveness of the butyrate was significantly reduced by the presence of even small amounts of the corresponding alcohol.


Subject(s)
Butyrates/analysis , Diptera/physiology , Sex Attractants/chemistry , Animals , Butyrates/chemistry , Electrophysiology , Female , Gas Chromatography-Mass Spectrometry , Male , Sexual Behavior, Animal , Stereoisomerism
19.
J Chem Ecol ; 35(2): 230-42, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19169750

ABSTRACT

The raspberry cane midge, Resseliella theobaldi, is a widespread pest of cultivated red raspberry in Europe. Pheromone-baited traps could provide a much-needed, accurate means to monitor the pest. Volatiles collected separately from virgin female and male midges were analyzed by gas chromatography (GC) coupled to mass spectrometry (MS) to reveal four female-specific components. In analyses by GC coupled to electroantennographic (EAG) recording from the antennae of a male midge, at least three of these components elicited responses. Based on its GC retention indices and mass spectrum, we propose that the major component is 2-acetoxy-5-undecanone and confirm this by synthesis of the racemic compound in seven steps and 63% yield from 4-pentenoic acid. The three minor components were each present at approximately 30% of the major component and were identified as 2-undecanone, (S)-2-acetoxyundecane, and (S)-2-undecanol by comparison of GC retention times and mass spectra with those of synthetic standards. GC analyses of the female-produced volatiles on an enantioselective column showed that only one enantiomer of 2-acetoxy-5-undecanone was present, and this was found to be the S-enantiomer by hydrolytic kinetic resolution of an epoxide intermediate in the synthesis and also by enantioselective hydrolysis of the racemic acetate with a lipase enzyme. The two enantiomers were also separated by high-performance liquid chromatography on an enantioselective column for field tests. In two field trapping tests, (S)-2-acetoxy-5-undecanone was highly attractive to male R. theobaldi; the R-enantiomer was not attractive. The racemic compound was just as attractive as the S-enantiomer, and addition of the three minor components in racemic form at two different loads did not affect catches. The pheromone could be dispensed from both rubber septa and polyethylene vials for at least 1 month under field conditions, but the former was preferred as it gave more uniform release. 2-Acetoxy-5-undecanone belongs to a new group of pheromone structures in the Cecidomyiidae, most others being mono- or diesters.


Subject(s)
Acetates/chemistry , Diptera/physiology , Sex Attractants/chemistry , Acetates/chemical synthesis , Animals , Diptera/chemistry , Female , Gas Chromatography-Mass Spectrometry , Male , Sex Attractants/chemical synthesis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...