Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(23): 20412-20422, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332823

ABSTRACT

Dihydropyrazole (1-22) derivatives were synthesized from already synthesized chalcones. The structures of all of the synthesized compounds were confirmed by elemental analysis and various spectroscopic techniques. Furthermore, the synthesized compounds were screened against α amylase as well as investigated for antioxidant activities. The synthesized compounds demonstrate good to excellent antioxidant activities with IC50 values ranging between 30.03 and 913.58 µM. Among the 22 evaluated compounds, 11 compounds exhibit excellent activity relative to the standard ascorbic acid IC50 = 287.30 µM. Interestingly, all of the evaluated compounds show good to excellent α amylase activity with IC50 values lying in the range between 0.5509 and 810.73 µM as compared to the standard acarbose IC50 = 73.12 µM. Among the investigated compounds, five compounds demonstrate better activity compared to the standard. In order to investigate the binding interactions of the evaluated compounds with amylase protein, molecular docking studies were conducted, which show an excellent docking score as compared to the standard. Furthermore, the physiochemical properties, drug likeness, and ADMET were investigated, and it was found that none of the compounds violate Lipiniski's rule of five, which shows that this class of compounds has enough potential to be used as a drug candidate in the near future.

2.
ACS Omega ; 7(51): 47671-47679, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36569212

ABSTRACT

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is considered a global public health concern since it causes high morbidity and mortality. Recently, it has been reported that repurposed anti-COVID-19 drugs might interact with multidrug resistance ABC transporter, particularly ABCB1. In the current study, a series of thiourea derivatives were screened as potential inhibitors against SARS-CoV-2 by targeting the attachment of receptor binding domain (RBD) of spike protein with ACE2 and their interaction with human ABCB1 has also been explored. The results indicated strong impairment of RBD-ACE2 attachment by BB IV-46 with a percentage inhibition of 95.73 ± 1.79% relative to the positive control, while BB V-19 was proven inactive with a percentage inhibition of 50.90 ± 0.84%. The same compound (BB IV-46) interacted with ABCB1 and potentially inhibited cell proliferation of P-gp overexpressing cell line with an IC50 value of 4.651 ± 0.06 µM. BB V-19, which was inactive against SARS-CoV-2, was inactive against ABCB1 with a higher IC50 value of 35.72 ± 0.09 µM. Furthermore, molecular dynamics simulations followed by binding free-energy analysis explored the binding interaction of BB IV-46 and BB V-19 to RBD region of spike protein of SARS-CoV-2. The results confirmed that compound BB IV-46 interacted strongly with RBD with a significant binding energy (-127.0 kJ/mol), while BB V-19 interacted weakly (-29.30 kJ/mol). The key interacting residues of the RBD involved in binding included Leu441, Lys444, and Tyr449. This study highlights the importance of BB IV-46 against SARS-CoV-2; however, further pharmacokinetic and pharmacodynamics studies are needed to be done.

3.
Sci Rep ; 12(1): 19027, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347914

ABSTRACT

Microorganisms can interact with plants to promote plant growth and act as biocontrol agents. Associations with plant growth-promoting rhizobacteria (PGPR) enhance agricultural productivity by improving plant nutrition and enhancing protection from pathogens. Microbial applications can be an ideal substitute for pesticides or fungicides, which can pollute the environment and reduce biological diversity. In this study, we isolated 68 bacterial strains from the root-adhering soil of quinoa (Chenopodium quinoa) seedlings. Bacterial strains exhibited several PGPR activities in vitro, including nutrient solubilization, production of lytic enzymes (cellulase, pectinase and amylase) and siderophore synthesis. These bacteria were further found to suppress the mycelial growth of the fungal pathogen Alternaria alternata. Nine bacterial strains were selected with substantial antagonistic activity and plant growth-promotion potential. These strains were identified based on their 16S rRNA gene sequences and selected for in planta experiments with tomato (Solanum lycopersicum) to estimate their growth-promotion and disease-suppression activity. Among the selected strains, B. licheniformis and B. pumilus most effectively promoted tomato plant growth, decreased disease severity caused by A. alternata infection by enhancing the activities of antioxidant defense enzymes and contributed to induced systemic resistance. This investigation provides evidence for the effectiveness and viability of PGPR application, particularly of B. licheniformis and B. pumilus in tomato, to promote plant growth and induce systemic resistance, making these bacteria promising candidates for biofertilizers and biocontrol agents.


Subject(s)
Chenopodium quinoa , Solanum lycopersicum , Solanum lycopersicum/genetics , Rhizosphere , Chenopodium quinoa/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil Microbiology
4.
Front Pharmacol ; 12: 661803, 2021.
Article in English | MEDLINE | ID: mdl-34093192

ABSTRACT

Morchella conica (M. conica) Pers. is one of six wild edible mushrooms that are widely used by Asian and European countries for their nutritional value. The present study assessed the anti-diabetic potential of M. conica methanolic extract (100 mg/kg body weight) on streptozotocin (STZ)-induced diabetic mice. STZ was used in a single dose of 65 mg/kg to establish diabetic models. Body weights, water/food intake and fasting blood glucose levels were measured. Histopathological analysis of the pancreas and liver were performed to evaluate STZ-induced tissue injuries. In addition, in vitro assays such as α-amylase and protein tyrosine phosphatase 1B (PTP1B) inhibitory, antiglycation, antioxidant and cytotoxicity were performed. The in vitro study indicated potent PTP1B inhibitory potential of M. conica with an IC50 value of 26.5 µg/ml as compared to the positive control, oleanolic acid (IC50 36.2 µg/ml). In vivo investigation showed a gradual decrease in blood sugar level in M. conica-treated mice (132 mg/dl) at a concentration of 100 mg/kg as compared to diabetic mice (346 mg/dl). The extract positively improved liver and kidney damages as were shown by their serum glutamic pyruvic transaminase, serum glutamic oxaloacetate, alkaline phosphatase, serum creatinine and urea levels. Histopathological analysis revealed slight liver and pancreas improvement of mice treated with extract. Cytotoxicity assays displayed lower IC50 values. Based on the present results of the study, it may be inferred that M. conica are rich in bioactive compounds responsible for antidiabetic activity and this mushroom may be a potential source of antidiabetic drug. However, further studies are required in terms of isolation of bioactive compounds to validate the observed results.

5.
Plants (Basel) ; 9(7)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640649

ABSTRACT

Polygonum hydropiper L. is a traditionally used medicinal plant. The present study was designed to explore the α-amylase inhibitory, antioxidant, and antimicrobial activities of Polygonum hydropiper L. Polarity-based solvent extracts (n-hexane, acetone, chloroform, methanol, ethanol, and water) of Polygonum hydropiper leaves and stem were used. Antioxidant activity was assessed by free radical scavenging assay (FRAP) and 2,2-diphenylpicrylhydrazyl (DPPH) free radical scavenging activity methods. Quantitative phytochemical analyses suggested that the stem of Polygonum hydropiper L. contains higher levels of bioactive compounds than its leaves (p < 0.05). The results suggested that stem-derived extracts of Polygonum hydropiper L. are more active against bacterial species, including two Gram-positive and three Gram-negative strains. Moreover, our results showed that the bioactive compounds of Polygonum hydropiper L. significantly inhibit α-amylase activity. Finally, we reported the polarity-based solvent extracts of Polygonum hydropiper L. and revealed that the stem, rather than leaves, has a high antioxidant potential as measured by FRAP and DPPH assay with IC50 values of 1.38 and 1.59 mg/mL, respectively. It may also be deducted from the data that the Polygonum hydropiper L. could be a significant candidate, which should be subjected to further isolation and characterization, to be used as an antidiabetic, antimicrobial and antioxidant resource in many industries, like food, pharmaceuticals and cosmetics.

6.
Anticancer Agents Med Chem ; 20(14): 1739-1751, 2020.
Article in English | MEDLINE | ID: mdl-32416700

ABSTRACT

BACKGROUND: Human P-glycoprotein (P-gp) is a transmembrane protein that belongs to the ATPBinding Cassette (ABC) transporters family. Physiologically, it exports toxins out of the cell, however, its overexpression leads to the phenomena of Multidrug-Resistance (MDR) by exporting a diverse range of compounds, which are structurally and chemically different from each other, thus creating a hurdle in the treatment of various diseases including cancer. The current study was designed to screen benzophenone sulfonamide derivatives as a class of inhibitors and potential anticancer agents for P-gp. METHODS: A total number of 15 compounds were evaluated. These compounds were screened in daunorubicin efflux inhibition assays using CCRF-CEM Vcr1000 cell line that overexpressed human P-gp. Cytotoxicity assay was also performed for active compounds 11, 14, and 13. These scaffolds were then docked in the homology model of human P-gp using mouse P-gp as a template (PDB ID: 4MIM) and the recently published Cryo Electron Microscopy (CEM) structure of human mouse chimeric P-gp to find their interactions with specified residues in the binding pocket. Analysis was performed using Labview VI and Graph pad prism version 5.0. RESULTS: Results revealed the potency of all these compounds in low nanomolar range whereas, compound 14 was found to be most active with IC50 value of 18.35nM±4.90 followed by 11 and 13 having IC50 values of 30.66nM±5.49 and 46.12nM±3.06, respectively. Moreover, IC50 values calculated for 14, 11 and 13 in cytotoxicity assay were found to be 22.97µM±0.026, 583.1µM±0.027 and 117.8µM±0.062, respectively. Docking results showed the interaction of these scaffolds in transmembrane helices (TM) where Tyr307, Tyr310, Tyr953, Met986 and Gln946 were found to be the major interaction partners, thus they might play a significant role in the transport of these scaffolds. CONCLUSION: Benzophenone sulfonamide derivatives showed IC50 values in low nanomolar range comparable to the standard inhibitor Verapamil, therefore they can be good inhibitors of P-gp and can serve as anticancer agents. Also, they have shown interactions in the transmembrane region sharing the same binding region of verapamil and zosuquidar.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Benzophenones/pharmacology , Sulfonamides/pharmacology , Antineoplastic Agents/chemistry , Benzophenones/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...