Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080362

ABSTRACT

Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice inhibin-deficient females is not yet well understood. The objective of this study was to evaluate the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage. This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha-/-) female mice with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the two groups under study. In addition, related modules to external traits and key gene drivers were determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction and 3 genes related to genomic pathways. By using principal component analysis (PCA), the 14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in inhibin and FSH hormone from the changes in the nutrition pattern.


Subject(s)
Granulosa Cells , Inhibins , Animals , Female , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/pharmacology , Gene Expression , Genomics , Granulosa Cells/metabolism , Humans , Inhibins/genetics , Mice , Mice, Knockout
2.
J Genet Eng Biotechnol ; 19(1): 153, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34637035

ABSTRACT

BACKGROUND: Mastitis is one of the major diseases causing economic loss to the dairy industry by reducing the quantity and quality of milk. Thus, the objective of this scientific study was to find new biomarkers based on genes for the early prediction before its severity. METHODS: In the present study, advanced bioinformatics including hierarchical clustering, enrichment analysis, active site prediction, epigenetic analysis, functional domain identification, and protein docking were used to analyze the important genes that could be utilized as biomarkers and therapeutic targets for mastitis. RESULTS: Four differentially expressed genes (DEGs) were identified in different regions of the mammary gland (teat cistern, gland cistern, lobuloalveolar, and Furstenberg's rosette) that resulted in 453, 597, 577, and 636 DEG, respectively. Also, 101 overlapped genes were found by comparing 27 different expressed genes. These genes were associated with eight immune response pathways including NOD-like receptor signaling pathway (IL8, IL18, IL1B, PYDC1) and chemokine signaling pathway (PTK2, IL8, NCF1, CCR1, HCK). Meanwhile, 241 protein-protein interaction networks were developed among overlapped genes. Fifty-seven regulatory events were found between miRNAs, expressed genes, and the transcription factors (TFs) through micro-RNA and transcription factors (miRNA-DEG-TF) regulatory network. The 3D structure docking model of the expressed genes proteins identified their active sites and the binding ligands that could help in choosing the appropriate feed or treatment for affected animals. CONCLUSIONS: The novelty of the distinguished DEG and their pathways in this study is that they can precisely improve the detection biomarkers and treatments techniques of cows' Escherichia coli mastitis disease due to their high affinity with the target site of the mammary gland before appearing the symptoms.

3.
J Genet Eng Biotechnol ; 19(1): 164, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34677734

ABSTRACT

BACKGROUND: Serine/threonine kinase 3 (AKT3) is a protein-coding gene that is associated with several cattle immune diseases including different tumors and cancers. The objective of this study was to investigate the differences in structures and functions of AKT3 of cow and buffalo cattle. METHODS: The sequence differences of gene-coding sequence (CDS) and core promoter region of AKT3 in cow and buffalo were analyzed by using bioinformatics tools and PCR sequencing. Also, the functional analysis of promoter regulating gene expression by RT-PCR was performed using 500 Holstein cows and buffalos. And, evaluation of AKT3 inflammatory response to the lipopolysaccharide (LPS)-induced mastitis was performed between both species. RESULTS: The results revealed the variation in 6 exons out of 13 exons of the two species of CDS. Also, 4 different regions in 3-kb promoters of the AKT3 gene were significantly different between cow and buffalo species, in which cow's AKT3 promoter sequence region was started from - 371 to - 1247, while in buffalo, the sequence was started from - 371 to - 969 of the promoter crucial region. Thus, the promoter was overexpressed in cows compared to buffaloes. As a result, significant differences (P < 0.05) between the two species in the AKT3 gene expression level related to the LPS stimulation in their mammary epithelial cell line. CONCLUSIONS: This study emphasized the great importance of the structural differences of AKT3 between the animal species on their different responses against immune diseases like mastitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...