Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 188(10): 3631-44, 2006 May.
Article in English | MEDLINE | ID: mdl-16672617

ABSTRACT

Burkholderia cenocepacia mutants that fail to produce the siderophore ornibactin were obtained following mutagenesis with mini-Tn5Tp. These mutants were shown to be growth restricted under conditions of iron depletion. In eight of the mutants, the transposon had integrated into one of two genes, orbI and orbJ, encoding nonribosomal peptide synthetases. In the other mutant, the transposon had inserted into an open reading frame, orbS, located upstream from orbI. The polypeptide product of orbS exhibits a high degree of similarity to the Pseudomonas aeruginosa extracytoplasmic function (ECF) sigma factor PvdS but possesses an N-terminal extension of approximately 29 amino acids that is not present in PvdS. Three predicted OrbS-dependent promoters were identified within the ornibactin gene cluster, based on their similarity to PvdS-dependent promoters. The iron-regulated activity of these promoters was shown to require OrbS. Transcription of the orbS gene was found to be under the control of an iron-regulated sigma(70)-dependent promoter. This promoter, but not the OrbS-dependent promoters, was shown to be a target for repression by the global regulator Fur. Our results demonstrate that production of ornibactin by B. cenocepacia in response to iron starvation requires transcription of an operon that is dependent on the Fur-regulated ECF sigma factor gene orbS. A mechanism is also proposed for the biosynthesis of ornibactin.


Subject(s)
Burkholderia/genetics , Oligopeptides/genetics , Regulon , Siderophores/genetics , Sigma Factor/metabolism , Base Sequence , Burkholderia/growth & development , Burkholderia/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Mutagenesis , Oligopeptides/metabolism , Plasmids , Restriction Mapping , Siderophores/metabolism
2.
J Bacteriol ; 186(2): 270-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14702294

ABSTRACT

The opportunistic pathogen Burkholderia cenocepacia produces the yellow-green fluorescent siderophore, pyochelin. To isolate mutants which do not produce this siderophore, we mutagenized B. cenocepacia with the transposon mini-Tn5Tp. Two nonfluorescent mutants were identified which were unable to produce pyochelin. In both mutants, the transposon had integrated into a gene encoding an orthologue of CysW, a component of the sulfate/thiosulfate transporter. The cysW gene was located within a putative operon encoding other components of the transporter and a polypeptide exhibiting high homology to the LysR-type regulators CysB and Cbl. Sulfate uptake assays confirmed that both mutants were defective in sulfate transport. Growth in the presence of cysteine, but not methionine, restored the ability of the mutants to produce pyochelin, suggesting that the failure to produce the siderophore was the result of a depleted intracellular pool of cysteine, a biosynthetic precursor of pyochelin. Consistent with this, the wild-type strain did not produce pyochelin when grown in the presence of lower concentrations of sulfate that still supported efficient growth. We also showed that whereas methionine and certain organosulfonates can serve as sole sulfur sources for this bacterium, they do not facilitate pyochelin biosynthesis. These observations suggest that, under conditions of sulfur depletion, cysteine cannot be spared for production of pyochelin even under iron starvation conditions.


Subject(s)
Burkholderia/metabolism , Phenols/metabolism , Sulfur/metabolism , Thiazoles , Burkholderia/genetics , Burkholderia/growth & development , Chromosome Mapping , Cysteine/pharmacology , DNA Transposable Elements , Methionine/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...