Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(28): 16817-16825, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498836

ABSTRACT

We describe the instantaneous fabrication of a highly porous three-dimensional (3D) nanostructured manganese oxides-reduced graphitic oxide (MnO x -rGO) electrode by using a pulse-photonic processing technique. Such nanostructures facilitate the movement of ions/electrons and offer an extremely high surface area for the electrode/electrolyte interaction. The electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) with 1 M KOH as the electrolyte. The as-prepared thin film electrode exhibits excellent electrochemical performance and an ultra-long lifetime by retaining 90% of the initial capacitance even after 100 000 GCD cycles at constant areal current density of 0.4 mA cm-2. We attribute this excellent lifetime performance to the conductive reduced graphitic oxide, synergistic effects of carbon composite and the metal oxides, and the unique porous nanostructure. Such highly porous morphology also enhances the structural stability of the electrode by buffering the volume changes during the redox processes.

2.
Nanotechnology ; 29(31): 315401, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-29737306

ABSTRACT

This work reports a new technique for scalable and low-temperature processing of nanostructured TiO2 thin films, allowing for practical manufacturing of TiO2-based devices such as perovskite solar cells at low-temperature or on flexible substrates. Dual layers of dense and mesoporous TiO2/graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J cm-2) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 and 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 ± 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 ± 1.11 Ω/□ and 28.90 ± 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO2 while offering the distinct advantages of scalable manufacturing, low-temperature processing, simultaneous bilayer fabrication, and in situ formation of removable carbon nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...