Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1385124, 2024.
Article in English | MEDLINE | ID: mdl-38882638

ABSTRACT

Myocardial infarction (MI) stands as a prominent contributor to global cardiovascular disease (CVD) mortality rates. Acute MI (AMI) can result in the loss of a large number of cardiomyocytes (CMs), which the adult heart struggles to replenish due to its limited regenerative capacity. Consequently, this deficit in CMs often precipitates severe complications such as heart failure (HF), with whole heart transplantation remaining the sole definitive treatment option, albeit constrained by inherent limitations. In response to these challenges, the integration of bio-functional materials within cardiac tissue engineering has emerged as a groundbreaking approach with significant potential for cardiac tissue replacement. Bioengineering strategies entail fortifying or substituting biological tissues through the orchestrated interplay of cells, engineering methodologies, and innovative materials. Biomaterial scaffolds, crucial in this paradigm, provide the essential microenvironment conducive to the assembly of functional cardiac tissue by encapsulating contracting cells. Indeed, the field of cardiac tissue engineering has witnessed remarkable strides, largely owing to the application of biomaterial scaffolds. However, inherent complexities persist, necessitating further exploration and innovation. This review delves into the pivotal role of biomaterial scaffolds in cardiac tissue engineering, shedding light on their utilization, challenges encountered, and promising avenues for future advancement. By critically examining the current landscape, we aim to catalyze progress toward more effective solutions for cardiac tissue regeneration and ultimately, improved outcomes for patients grappling with cardiovascular ailments.

2.
Front Cell Dev Biol ; 11: 1245872, 2023.
Article in English | MEDLINE | ID: mdl-37900276

ABSTRACT

The innate and adaptive immune systems rely on the skin for various purposes, serving as the primary defense against harmful environmental elements. However, skin lesions may lead to undesirable consequences such as scarring, accelerated skin aging, functional impairment, and psychological effects over time. The rising popularity of mesenchymal stromal cells (MSCs) for skin wound treatment is due to their potential as a promising therapeutic option. MSCs offer advantages in terms of differentiation capacity, accessibility, low immunogenicity, and their central role in natural wound-healing processes. To accelerate the healing process, MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue development. Oxygen plays a critical role in the formation and expansion of mammalian cells. The term "normoxia" refers to the usual oxygen levels, defined at 20.21 percent oxygen (160 mm of mercury), while "hypoxia" denotes oxygen levels of 2.91 percent or less. Notably, the ambient O2 content (20%) in the lab significantly differs from the 2%-9% O2 concentration in their natural habitat. Oxygen regulation of hypoxia-inducible factor-1 (HIF-1) mediated expression of multiple genes plays a crucial role in sustaining stem cell destiny concerning proliferation and differentiation. This study aims to elucidate the impact of normoxia and hypoxia on MSC biology and draw comparisons between the two. The findings suggest that expanding MSC-based regenerative treatments in a hypoxic environment can enhance their growth kinetics, genetic stability, and expression of chemokine receptors, ultimately increasing their effectiveness.

3.
Cell Commun Signal ; 21(1): 272, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784164

ABSTRACT

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this  cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.


Subject(s)
Janus Kinases , Virus Diseases , Humans , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...