Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Pestic Biochem Physiol ; 113: 15-24, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25052522

ABSTRACT

The indiscriminate use of pesticides and herbicides to enhance crop production has aroused great concern, because these products are likely to reach the aquatic environment, thereby posing a health concern for humans and aquatic species. Cypermethrin (CYP), a type II pyrethroid insecticide, is widely used in agriculture and for other purposes. Therefore a study was conducted for the assessment of cytotoxic, genotoxic and oxidative stress of CYP in IEG, CB, ICG, LRG and CSG cell lines at 24h exposure. The cytotoxic effect of CYP in IEG, CB, ICG, LRG and CSG cell lines was assessed using MTT, NR, AB and CB assays. Linear correlations between each EC50 values, of CYP resulting in 50% inhibition of cytotoxicity parameters after 24h exposure to CYP were calculated for IEG, CB, ICG, LRG and CSG cell lines using MTT, NR, AB and CB assays. Statistical analysis revealed good correlation with R(2)=0.90-0.939 for all combinations between endpoints employed. The percentage of DNA damage was assessed by comet assay in IEG, CB, ICG, LRG and CSG cells exposed to CYP. The results of antioxidant parameters obtained show a significant increase in lipid peroxidation (LPO) level and decreased level of GSH, SOD and CAT in IEG, CB, ICG, LRG and CSG cell lines after exposure to increasing CYP in a concentration-dependent manner. This work proves that fish cell lines could be used not only for cytotoxicity and genotoxicity studies but also for studying oxidative stress when exposed to environmental contaminants such as pesticides and other pollutants.


Subject(s)
Insecticides/pharmacology , Insecticides/toxicity , Oxidative Stress/drug effects , Pyrethrins/pharmacology , Pyrethrins/toxicity , Animals , Catalase/metabolism , Cell Line , Comet Assay , DNA Damage/drug effects , Fishes , Glutathione/metabolism , Lipid Peroxidation/drug effects
3.
J Fish Dis ; 37(11): 969-80, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24117535

ABSTRACT

An attempt was made to determine the replication efficiency of hepatopancreatic parvo-like virus (HPV) of shrimp in different organs of freshwater rice-field crab Paratelphusa hydrodomous (Herbst) using bioassay, PCR, RT-PCR, ELISA, Western blot and q-PCR analyses. Another attempt was made to use this crab as an alternative to penaeid shrimp for the large-scale production of HPV. This crab was found to be highly susceptible to HPV by intramuscular injection. The systemic HPV infection was confirmed by PCR and Western blot analyses in freshwater crab. The expression of capsid protein gene in different organs of infected crab was revealed by RT-PCR analysis. Indirect ELISA was used to quantify the capsid protein in different organs of the crab. The copy number of HPV in different organs of the infected crab was quantified by q-PCR. The results revealed a steady decrease in CT values in different organs of the infected crab during the course of infection. The viral inoculum that was prepared from different organs of the infected crab caused significant mortality in post-larvae of tiger prawn, Penaeus monodon (Fabricius). The results revealed that this rice-field crab could be used as an alternative host for HPV replication and also for large-scale production of HPV.


Subject(s)
Brachyura/virology , Parvoviridae/physiology , Animals , Capsid Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation , Oryza , Tissue Distribution , Virus Replication
4.
Chemosphere ; 96: 89-98, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23972731

ABSTRACT

A new cell line, Channa striatus gill (CSG), derived from the gill tissue of murrel, was established and characterized. The CSG cell line was maintained in Leibovitz's L-15 supplemented with 10% fetal bovine serum and has been subcultured more than 92 times. This cell line was able to grow in a range of temperatures from 22 to 32°C with optimal growth at 28°C. The plating efficiency was very high (52.21%) and doubling time was approximately 37h. The gill cell line was cryopreserved at different passage levels and revived successfully with 85% survival. Polymerase chain reaction amplification of mitochondrial 16S rRNA using primer specific to C. striatus confirmed the origin of this cell line from murrel. The cell line was further characterized by immunocytochemical analysis, chromosome number, transfection and mycoplasma detection. The cytotoxicity of endosulfan was assessed in CSG cell line using apoptosis assay, comet assay, mitochondrial alteration and five other endpoints such as Rhodamine 123 uptake, 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red assay, Alamar Blue assay and Methylene Blue protein assay. Acute toxicity study on fish was conducted by exposing murrel for 96h to endosulfan under static conditions. Statistical analysis revealed good correlation with r(2)=0.972-0.997 among the five endpoints. Linear correlations between the in vivo lethal concentration 50 (LC50) and each in vitro effective concentration 50 (EC50) were highly significant. The present study highlights the development of a new gill cell line from an air breathing fish that could be used as an alternative in vitro tools for studying pesticide toxicity in fish.


Subject(s)
Gills/cytology , Toxicity Tests, Acute/methods , Animals , Biological Assay , Cell Line , Endosulfan/toxicity , Gills/drug effects , Perciformes , Water Pollutants, Chemical/toxicity
5.
J Fish Dis ; 37(8): 703-10, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23952017

ABSTRACT

White tail disease (WTD) caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) is a serious problem in prawn hatcheries. The gene for capsid protein of MrNV (MCP43) was cloned into pRSET B expression vector. The MCP43 protein was expressed as a protein with a 6-histidine tag in Escherichia coli GJ1158 with NaCl induction. This recombinant protein, which was used to raise the antiserum in rabbits, recognized capsid protein in different WTD-infected post-larvae and adult prawn. Various immunological methods such as Western blot, dot blot and ELISA techniques were employed to detect MrNV in infected samples using the antiserum raised against recombinant MCP43 of MrNV. The dot blot assay using anti-rMCP43 was found to be capable of detecting MrNV in WTD-infected post-larvae as early as at 24 h post-infection. The antiserum raised against r-MCP43 could detect the MrNV in the infected samples at the level of 100 pg of total protein. The capsid protein of MrNV estimated by ELISA using anti-rMCP43 and pure r-MCP43 as a standard was found to increase gradually during the course of infection from 24 h p.i. to moribund stage. The results of immunological diagnostic methods employed in this study were compared with that of RT-PCR to test the efficiency of antiserum raised against r-MCP43 for the detection of MrNV. The Western blot, dot blot and ELISA detected all MrNV-positive coded samples as detected by RT-PCR.


Subject(s)
Capsid Proteins/immunology , Capsid Proteins/metabolism , Immunoassay/methods , Nodaviridae/isolation & purification , Nodaviridae/metabolism , Palaemonidae/virology , Animals , Gene Expression Regulation, Viral/physiology , Host-Pathogen Interactions , Larva/virology , Life Cycle Stages
6.
Biologicals ; 42(1): 8-21, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24176716

ABSTRACT

Naja naja venom was characterized by its immunochemical properties and electrophoretic pattern which revealed eight protein bands (14 kDa, 24 kDa, 29 kDa, 45 kDa, 48 kDa, 65 kDa, 72 kDa and 99 kDa) by SDS-PAGE in reducing condition after staining with Coomassie Brilliant Blue. The results showed that Naja venom presented high lethal activity. Whole venom antiserum or individual venom protein antiserum (14 kDa, 29 kDa, 65 kDa, 72 kDa and 99 kDa) of venom could recognize N. naja venom by Western blotting and ELISA, and N. naja venom presented antibody titer when assayed by ELISA. The neutralization tests showed that the polyvalent antiserum neutralized lethal activities by both in vivo and in vitro studies using mice and Vero cells. The antiserum could neutralize the lethal activities in in-vivo and antivenom administered after injection of cobra venom through intraperitoneal route in mice. The cocktail antiserum also could neutralize the cytotoxic activities in Vero cell line by MTT and Neutral red assays. The results of the present study suggest that cocktail antiserum neutralizes the lethal activities in both in vitro and in vivo models using the antiserum against cobra venom and its individual venom proteins serum produced in rabbits.


Subject(s)
Elapid Venoms/immunology , Immune Sera , Neutralization Tests , Animals , Blotting, Western , Chlorocebus aethiops , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Lethal Dose 50 , Mice , Rabbits , Vero Cells
7.
Acta Trop ; 128(3): 486-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23906611

ABSTRACT

The present study examines the use of CS/TPP nanoparticles for gene delivery in different tissues of shrimp through oral route. The viral gene of WSSV was used to construct DNA vaccines using pcDNA 3.1, a eukaryotic expression vector and the constructs were named as pVP28. The CS/TPP nanoparticles were synthesized by ionic gelation process and these particles were characterized. The structure and morphology of the nanoparticles were studied by field emission scanning electron microscopy (FE-SEM) and FTIR (Fourier Transform Infrared Spectra). The cytotoxicity of CS/TPP nanoparticles was evaluated by MTT assay using fish cell line. The expression of gene was confirmed by Immuno-dot blot, ELISA and RT-PCR analyses. The results indicate that DNA can be easily delivered into shrimp by feeding with CS/TPP nanoparticles.


Subject(s)
Chitosan/administration & dosage , Crustacea/genetics , Gene Transfer Techniques , Nanoparticles/administration & dosage , Polyphosphates/administration & dosage , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage , Administration, Oral , Animals , Cell Line , Cell Survival/drug effects , Chitosan/toxicity , Fishes , Microscopy, Electron, Scanning , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Polyphosphates/toxicity , Spectroscopy, Fourier Transform Infrared , Vaccines, DNA/genetics , Vaccines, DNA/toxicity , Viral Vaccines/genetics , Viral Vaccines/toxicity , White spot syndrome virus 1/genetics
8.
J Invertebr Pathol ; 112(3): 229-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23262397

ABSTRACT

Hepatopancreatic parvovirus (HPV) which causes infection in many species of penaeid shrimp is a serious viral pathogen in the young life stages of shrimp. An attempt was made to develop an in vitro system using C6/36 subclone of Aedes albopictus cell line for propagation of HPV. The results revealed that C6/36 cells were susceptible to this virus and the infected cells showed CPE in the form of vacuole formation. The results of PCR, immunocytochemistry and Western blot revealed the HPV-infection in C6/36 cell line. The RT-PCR analysis confirmed the replication of HPV in C6/36 cell line. The HPV load was quantified at different time intervals by ELISA and real time PCR, and the results showed the increase of viral load in C6/36 cell line in time course of infection. HPV propagated in C6/36 cell line was used to infect post-larvae of shrimp and the results showed that the twentieth passage of HPV propagated in C6/36 cell line caused 100% mortality in post-larvae after 6 weeks post infection (d.p.i.). The infected post-larvae showed clinical signs of reduced growth, reduced preening, muscle opacity and atrophy of hepatopancreas. The HPV-infection was confirmed by PCR. The results of the present study showed that C6/36 cell line can be used as an in vitro model for HPV replication instead of whole animal.


Subject(s)
Aedes , Densovirinae/physiology , Penaeidae/virology , Virus Cultivation/methods , Animals , Cell Line , Models, Biological , Virus Replication
9.
J Fish Dis ; 35(12): 917-25, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22943699

ABSTRACT

An attempt was made to determine the replication efficiency of white spot syndrome virus (WSSV) of shrimp in different organs of freshwater rice-field crab, Paratelphusa hydrodomous (Herbst), using bioassay, PCR, RT-PCR, ELISA, Western blot and real-time PCR analyses, and also to use this crab instead of penaeid shrimp for the large-scale production of WSSV. This crab was found to be highly susceptible to WSSV by intramuscular injection. PCR and Western blot analyses confirmed the systemic WSSV infection in freshwater crab. The RT-PCR analysis revealed the expression of VP28 gene in different organs of infected crab. The indirect ELISA was used to quantify the VP28 protein in different organs of crab. It was found that there was a high concentration of VP28 protein in gill tissue, muscle, haemolymph and heart tissue. The copy number of WSSV in different organs of infected crab was quantified by real-time PCR, and the results revealed a steady increase in copy number in different organs of infected crab during the course of infection. The viral inoculum prepared from different organs of infected crab caused significant mortality in tiger prawn, Penaeus monodon (Fabricius). The results revealed that this crab can be used as an alternate host for WSSV replication and production.


Subject(s)
Brachyura/virology , Virus Replication , White spot syndrome virus 1/physiology , Animals , Fresh Water , Gene Expression Profiling , Gene Expression Regulation, Viral , Time Factors , Viral Envelope Proteins/genetics , White spot syndrome virus 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...