Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 13: 142, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25286865

ABSTRACT

BACKGROUND: Non-destructive continuous monitoring of regenerative tissue is required throughout the entire period of in vitro tissue culture. Microscopic electrical impedance tomography (micro-EIT) has the potential to monitor the physiological state of tissues by forming three-dimensional images of impedance changes in a non-destructive and label-free manner. We developed a new micro-EIT system and report on simulation and experimental results of its macroscopic model. METHODS: We propose a new micro-EIT system design using a cuboid sample container with separate current-driving and voltage sensing electrodes. The top is open for sample manipulations. We used nine gold-coated solid electrodes on each of two opposing sides of the container to produce multiple linearly independent internal current density distributions. The 360 voltage sensing electrodes were placed on the other sides and base to measure induced voltages. Instead of using an inverse solver with the least squares method, we used a projected image reconstruction algorithm based on a logarithm formulation to produce projected images. We intended to improve the quality and spatial resolution of the images by increasing the number of voltage measurements subject to a few injected current patterns. We evaluated the performance of the micro-EIT system with a macroscopic physical phantom. RESULTS: The signal-to-noise ratio of the developed micro-EIT system was 66 dB. Crosstalk was in the range of -110.8 to -90.04 dB. Three-dimensional images with consistent quality were reconstructed from physical phantom data over the entire domain. From numerical and experimental results, we estimate that at least 20 × 40 electrodes with 120 µm spacing are required to monitor the complex shape of ingrowth neotissue inside a scaffold with 300 µm pore. CONCLUSION: The experimental results showed that the new micro-EIT system with a reduced set of injection current patterns and a large number of voltage sensing electrodes can be potentially used for tissue culture monitoring. Numerical simulations demonstrated that the spatial resolution could be improved to the scale required for tissue culture monitoring. Future challenges include manufacturing a bioreactor-compatible container with a dense array of electrodes and a larger number of measurement channels that are sensitive to the reduced voltage gradients expected at a smaller scale.


Subject(s)
Imaging, Three-Dimensional/methods , Tissue Culture Techniques/methods , Tomography/methods , Algorithms , Cartilage, Articular/pathology , Computer Simulation , Electric Impedance , Electrodes , Equipment Design , Humans , Image Processing, Computer-Assisted , Least-Squares Analysis , Phantoms, Imaging , Reproducibility of Results , Signal-To-Noise Ratio , Tissue Engineering/methods
2.
Physiol Meas ; 35(6): 1125-35, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24845453

ABSTRACT

Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons.


Subject(s)
Artifacts , Electric Conductivity , Animals , Computer Simulation , Electrodes , Image Processing, Computer-Assisted , Models, Animal , Models, Theoretical , Pulmonary Ventilation/physiology , Sus scrofa
3.
Comput Math Methods Med ; 2013: 964918, 2013.
Article in English | MEDLINE | ID: mdl-23935705

ABSTRACT

Electrical Impedance Tomography (EIT) is a very attractive functional imaging method despite the low sensitivity and resolution. The use of internal electrodes with the conventional reconstruction algorithms was not enough to enhance image resolution and accuracy in the region of interest (ROI). We propose a local ROI imaging method with internal electrodes developed from careful analysis of the sensitivity matrix that is designed to reduce the sensitivity of the voxels outside the local region and optimize the sensitivity of the voxel inside the local region. We perform numerical simulations and physical measurements to demonstrate the localized EIT imaging method. In preliminary results with multiple objects we show the benefits of using an internal electrode and the improved resolution due to the local ROI image reconstruction method. The sensitivity is further increased by allowing the surface electrodes to be unevenly spaced with a higher density of surface electrodes near the ROI. Also, we analyse how much the image quality is improved using several performance parameters for comparison. While these have not yet been studied in depth, it convincingly shows an improvement in local sensitivity in images obtained with an internal electrode in comparison to a standard reconstruction method.


Subject(s)
Electric Impedance , Tomography/methods , Algorithms , Computer Simulation , Electrodes , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...