Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9416, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658570

ABSTRACT

Rice (Oryza sativa L.) is an important member of the family Poaceae and more than half of world population depend for their dietary nutrition on rice. Rice cultivars with higher yield, resilience to stress and wider adaptability are essential to ensure production stability and food security. The fundamental objective of this study was to identify higher-yielding rice genotypes with stable performance and wider adaptability in a rice growing areas of Pakistan. A triplicate RCBD design experiment with 20 Green Super Rice (GSR) advanced lines was conducted at 12 rice growing ecologies in four Provinces of Pakistan. Grain yield stability performance was assessed by using different univariate and multivariate statistics. Analysis of variance revealed significant differences among genotypes, locations, and G x E interaction for mean squares (p < 0.05) of major yield contributing traits. All the studied traits except for number of tillers per plant revealed higher genotypic variance than environmental variance. Broad sense heritability was estimated in the range of 44.36% to 98.60%. Based on ASV, ASI, bi, Wi2, σ2i and WAAS statistics, the genotypes G1, G4, G5, G8, G11 and G12 revealed lowest values for parametric statistics and considered more stable genotypes based on  paddy yield. The additive main effects and multiplicative interaction (AMMI) model revealed significant variation (p < 0.05) for genotypes, non-signification for environment and highly significant for G × E interaction. The variation proportion of PC1 and PC2 from interaction revealed 67.2% variability for paddy yield. Based on 'mean verses stability analysis of GGE biplot', 'Which-won-where' GGE Biplot, 'discriminativeness vs. representativeness' pattern of stability, 'IPCA and WAASB/GY' ratio-based stability Heat-map, and ranking of genotypes, the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 were observed ideal genotypes with yield potential more than 8 tons ha-1. Discriminativeness vs. representativeness' pattern of stability identifies two environments, E5 (D.I Khan, KPK) and E6 (Usta Muhammad, Baluchistan) were best suited for evaluating genotypic yield performance. Based on these findings we have concluded that the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 could be included in the commercial varietal development process and future breeding program.


Subject(s)
Genotype , Oryza , Oryza/genetics , Oryza/growth & development , Pakistan , Phenotype , Plant Breeding/methods , Gene-Environment Interaction , Edible Grain/genetics , Edible Grain/growth & development , Quantitative Trait, Heritable
2.
Mol Biol Rep ; 50(9): 7381-7392, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450076

ABSTRACT

BACKGROUND: Alkaline-salt is one of the abiotic stresses that slows plant growth and developmental processes and threatens crop yield. Long non-coding RNAs (lncRNAs) are endogenous RNA found in plants that engage in a variety of cellular functions and stress responses. METHOD: lncRNAs act as competing endogenous RNAs (ceRNA) and constitute a new set of gene control. The precise regulatory mechanism by which lncRNAs function as ceRNAs in response to alkaline-salt stress remains unclear. We identified alkaline-salt responsive lncRNAs using transcriptome-wide analysis of two varieties including alkaline-salt tolerant [WD20342 (WD)] and alkaline-salt sensitive [Caidao (CD)] rice cultivar under control and alkaline-salt stress treated [WD20342 (WDT, and Caidao (CDT)] conditions. RESULTS: Investigating the competitive relationships between mRNAs and lncRNAs, we next built a ceRNA network involving lncRNAs based on the ceRNA hypothesis. Expression profiles revealed that a total of 65, 34, and 1549 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs were identified in alkaline-salt tolerant WD (Control) vs. WDT (Treated). Similarly, 75 DE-lncRNAs, 34 DE-miRNAs, and 1725 DE-mRNAs (including up-regulated and down-regulated) were identified in alkaline-salt sensitive CD (Control) vs. CDT (Treated), respectively. An alkaline-salt stress ceRNA network discovered 321 lncRNA-miRNA-mRNA triplets in CD and CDT, with 32 lncRNAs, 121 miRNAs, and 111 mRNAs. Likewise, 217 lncRNA-miRNA-mRNA triplets in WD and WDT revealed the NONOSAT000455-osa_miR5809b-LOC_Os11g01210 triplet with the highest degree as a hub node with the most significant positive correlation in alkaline-salt stress response. CONCLUSION: The results of our investigation indicate that osa-miR5809b is dysregulated and plays a part in regulating the defense response of rice against alkaline-salt stress. Our study highlights the regulatory functions of lncRNAs acting as ceRNAs in the mechanisms underlying alkaline-salt resistance in rice.


Subject(s)
MicroRNAs , Oryza , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Oryza/genetics , Oryza/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Salt Stress/genetics , RNA, Messenger/genetics
3.
Front Genet ; 13: 1039548, 2022.
Article in English | MEDLINE | ID: mdl-36506305

ABSTRACT

Rice plants experience various biotic (such as insect and pest attack) and abiotic (such as drought, salt, heat, and cold etc.) stresses during the growing season, resulting in DNA damage and the subsequent losses in rice production. DNA Replication Helicase/Nuclease2 (DNA2) is known to be involved in DNA replication and repair. In animals and yeast DNA2 are well characterized because it has the abilities of both helicase and nuclease, it plays a crucial role in DNA replication in the nucleus and mitochondrial genomes. However; they are not fully examined in plants due to less focused on plants damage repair. To fill this research gap, the current study focused on the genome-wide identification and characterization of OsDNA2 genes, along with analyses of their transcriptional expression, duplication, and phylogeny in rice. Overall, 17 OsDNA2 members were reported to be found on eight different chromosomes (2, 3, 4, 6, 7, 9, 10, and 11). Among these chromosomes (Chr), Chr4 contained a maximum of six OsDNA2 genes. Based on phylogenetic analysis, the OsDNA2 gene members were clustered into three different groups. Furthermore, the conserved domains, gene structures, and cis-regulatory elements were systematically investigated. Gene duplication analysis revealed that OsDNA2_2 had an evolutionary relationship with OsDNA2_14, OsDNA2_5 with OsDNA2_6, and OsDNA2_1 with OsDNA2_8. Moreover, results showed that the conserved domain (AAA_11 superfamily) were present in the OsDNA2 genes, which belongs to the DEAD-like helicase superfamily. In addition, to understand the post-transcriptional modification of OsDNA2 genes, miRNAs were predicted, where 653 miRNAs were reported to target 17 OsDNA2 genes. The results indicated that at the maximum, OsDNA2_1 and OsDNA2_4 were targeted by 74 miRNAs each, and OsDNA2_9 was less targeted (20 miRNAs). The three-dimensional (3D) structures of 17 OsDNA2 proteins were also predicted. Expression of OsDNA2 members was also carried out under drought and salt stresses, and conclusively their induction indicated the possible involvement of OsDNA2 in DNA repair under stress when compared with the control. Further studies are recommended to confirm where this study will offer valuable basic data on the functioning of DNA2 genes in rice and other crop plants.

4.
Front Genet ; 13: 988256, 2022.
Article in English | MEDLINE | ID: mdl-36338987

ABSTRACT

The widespread impacts of projected global and regional climate change on rice yield have been investigated by different indirect approaches utilizing various simulation models. However, direct approaches to assess the impacts of climatic variabilities on rice growth and development may provide more reliable evidence to evaluate the effects of climate change on rice productivity. Climate change has substantially impacted rice production in the mid-high latitudes of China, especially in Northeast China (NEC). Climatic variabilities occurring in NEC since the 1970s have resulted in an obvious warming trend, which made this region one of the three major rice-growing regions in China. However, the projections of future climate change have indicated the likelihood of more abrupt and irregular climatic changes, posing threats to rice sustainability in this region. Hence, understanding the self-adaptability and identifying adjustive measures to climate variability in high latitudes has practical significance for establishing a sustainable rice system to sustain future food security in China. A well-managed field study under randomized complete block design (RCBD) was conducted in 2017 and 2018 at two study sites in Harbin and Qiqihar, located in Heilongjiang province in NEC. Four different cultivars were evaluated: Longdao-18, Longdao-21 (longer growth duration), Longjing-21, and Suijing-18 (shorter growth duration) to assess the inter-relationships among grain-filling parameters, grain yield and yield components, and grain quality attributes. To better compare the adaptability mechanisms between grain-filling and yield components, the filling phase was divided into three sub-phases (start, middle, and late). The current study evaluated the formation and accumulation of the assimilates in superior and inferior grains during grain-filling, mainly in the middle sub-phase, which accounted for 59.60% of the yield. The grain yields for Suijing-18, Longjing-21, Longdao-21, and Longdao-18 were 8.02%, 12.78%, 17.19%, and 20.53% higher in Harbin than those in Qiqihar, respectively in 2017, with a similar trend observed in 2018. At Harbin, a higher number of productive tillers was noticed in Suijing-18, with averages of 17 and 15 in 2017 and 2018, respectively. The grain-filling parameters of yield analysis showed that the filling duration in Harbin was conducive to increased yield but the low dry weight of inferior grains was a main factor limiting the yield in Qiqihar. The average protein content values in Harbin were significantly higher (8.54% and 9.13%) than those in Qiqihar (8.34% and 9.14%) in 2017 and 2018, respectively. The amylose content was significantly higher in Harbin (20.03% and 22.27%) than those in Qiqihar (14.44% and 14.67%) in 2017 and 2018, respectively. The chalkiness percentage was higher in Qiqihar, indicating that Harbin produced good quality rice. This study provides more direct evidence of the relative changes in rice grain yield due to changes in grain-filling associated with relative changes in environmental components. These self-adaptability mechanisms to climatic variability and the inter-relationships between grain-filling and grain yield underscore the urgent to investigate and explore measures to improve Japonica rice sustainability, with better adaptation to increasing climatic variabilities. These findings may also be a reference for other global rice regions at high latitudes in addressing the impacts of climate change on future rice sustainability.

5.
Front Plant Sci ; 13: 960641, 2022.
Article in English | MEDLINE | ID: mdl-36092421

ABSTRACT

Rice (Oryza sativa L.) is considered as a staple food for more than half of the global population, and sustaining productivity under a scarcity of resources is challenging to meet the future food demands of the inflating global population. The aerobic rice system can be considered as a transformational replacement for traditional rice, but the widespread adaptation of this innovative approach has been challenged due to higher losses of nitrogen (N) and reduced N-use efficiency (NUE). For normal growth and developmental processes in crop plants, N is required in higher amounts. N is a mineral nutrient and an important constituent of amino acids, nucleic acids, and many photosynthetic metabolites, and hence is essential for normal plant growth and metabolism. Excessive application of N fertilizers improves aerobic rice growth and yield, but compromises economic and environmental sustainability. Irregular and uncontrolled use of N fertilizers have elevated several environmental issues linked to higher N losses in the form of nitrous oxide (N2O), ammonia (NH3), and nitrate (NO3 -), thereby threatening environmental sustainability due to higher warming potential, ozone depletion capacities, and abilities to eutrophicate the water resources. Hence, enhancing NUE in aerobic rice has become an urgent need for the development of a sustainable production system. This article was designed to investigate the major challenge of low NUE and evaluate recent advances in pathways of the N cycle under the aerobic rice system, and thereby suggest the agronomic management approaches to improve NUE. The major objective of this review is about optimizing the application of N inputs while sustaining rice productivity and ensuring environmental safety. This review elaborates that different soil conditions significantly shift the N dynamics via changes in major pathways of the N cycle and comprehensively reviews the facts why N losses are high under the aerobic rice system, which factors hinder in attaining high NUE, and how it can become an eco-efficient production system through agronomic managements. Moreover, it explores the interactive mechanisms of how proper management of N cycle pathways can be accomplished via optimized N fertilizer amendments. Meanwhile, this study suggests several agricultural and agronomic approaches, such as site-specific N management, integrated nutrient management (INM), and incorporation of N fertilizers with enhanced use efficiency that may interactively improve the NUE and thereby plant N uptake in the aerobic rice system. Additionally, resource conservation practices, such as plant residue management, green manuring, improved genetic breeding, and precision farming, are essential to enhance NUE. Deep insights into the recent advances in the pathways of the N cycle under the aerobic rice system necessarily suggest the incorporation of the suggested agronomic adjustments to reduce N losses and enhance NUE while sustaining rice productivity and environmental safety. Future research on N dynamics is encouraged under the aerobic rice system focusing on the interactive evaluation of shifts among activities and diversity in microbial communities, NUE, and plant demands while applying N management measures, which is necessary for its widespread adaptation in face of the projected climate change and scarcity of resources.

6.
Front Plant Sci ; 13: 927535, 2022.
Article in English | MEDLINE | ID: mdl-35903229

ABSTRACT

Climatic variability has been acquiring an extensive consideration due to its widespread ability to impact food production and livelihoods. Climate change has the potential to intersperse global approaches in alleviating hunger and undernutrition. It is hypothesized that climate shifts bring substantial negative impacts on food production systems, thereby intimidating food security. Vast developments have been made addressing the global climate change, undernourishment, and hunger for the last few decades, partly due to the increase in food productivity through augmented agricultural managements. However, the growing population has increased the demand for food, putting pressure on food systems. Moreover, the potential climate change impacts are still unclear more obviously at the regional scales. Climate change is expected to boost food insecurity challenges in areas already vulnerable to climate change. Human-induced climate change is expected to impact food quality, quantity, and potentiality to dispense it equitably. Global capabilities to ascertain the food security and nutritional reasonableness facing expeditious shifts in biophysical conditions are likely to be the main factors determining the level of global disease incidence. It can be apprehended that all food security components (mainly food access and utilization) likely be under indirect effect via pledged impacts on ménage, incomes, and damages to health. The corroboration supports the dire need for huge focused investments in mitigation and adaptation measures to have sustainable, climate-smart, eco-friendly, and climate stress resilient food production systems. In this paper, we discussed the foremost pathways of how climate change impacts our food production systems as well as the social, and economic factors that in the mastery of unbiased food distribution. Likewise, we analyze the research gaps and biases about climate change and food security. Climate change is often responsible for food insecurity issues, not focusing on the fact that food production systems have magnified the climate change process. Provided the critical threats to food security, the focus needs to be shifted to an implementation oriented-agenda to potentially cope with current challenges. Therefore, this review seeks to have a more unprejudiced view and thus interpret the fusion association between climate change and food security by imperatively scrutinizing all factors.

7.
Front Plant Sci ; 13: 913204, 2022.
Article in English | MEDLINE | ID: mdl-35769304

ABSTRACT

The abundance and structural composition of nitrogen (N) transformation-related microbial communities under certain environmental conditions provide sufficient information about N cycle under different soil conditions. This study aims to explore the major challenge of low N use efficiency (NUE) and N dynamics in aerobic rice systems and reveal the agronomic-adjustive measures to increase NUE through insights into the ecophysiology of ammonia oxidizers. Water-saving practices, like alternate wetting and drying (AWD), dry direct seeded rice (DDSR), wet direct seeding, and saturated soil culture (SSC), have been evaluated in lowland rice; however, only few studies have been conducted on N dynamics in aerobic rice systems. Biological ammonia oxidation is majorly conducted by two types of microorganisms, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). This review focuses on how diversified are ammonia oxidizers (AOA and AOB), whose factors affect their activities and abundance under different soil conditions. It summarizes findings on pathways of N cycle, rationalize recent research on ammonia oxidizers in N-cycle, and thereby suggests adjustive agronomic measures to reduce N losses. This review also suggests that variations in soil properties significantly impact the structural composition and abundance of ammonia oxidizers. Nitrification inhibitors (NIs) especially nitrapyrin, reduce the nitrification rate and inhibit the abundance of bacterial amoA without impacting archaeal amoA. In contrast, some NIs confine the hydrolysis of synthetic N and, therefore, keep low NH4 +-N concentrations that exhibit no or very slight impact on ammonia oxidizers. Variations in soil properties are more influential in the community structure and abundance of ammonia oxidizers than application of synthetic N fertilizers and NIs. Biological nitrification inhibitors (BNIs) are natural bioactive compounds released from roots of certain plant species, such as sorghum, and could be commercialized to suppress the capacity of nitrifying soil microbes. Mixed application of synthetic and organic N fertilizers enhances NUE and plant N-uptake by reducing ammonia N losses. High salt concentration promotes community abundance while limiting the diversity of AOB and vice versa for AOA, whereas AOA have lower rate for potential nitrification than AOB, and denitrification accounts for higher N2 production. Archaeal abundance, diversity, and structural composition change along an elevation gradient and mainly depend on various soil factors, such as soil saturation, availability of NH4 +, and organic matter contents. Microbial abundance and structural analyses revealed that the structural composition of AOA was not highly responsive to changes in soil conditions or N amendment. Further studies are suggested to cultivate AOA and AOB in controlled-environment experiments to understand the mechanisms of AOA and AOB under different conditions. Together, this evaluation will better facilitate the projections and interpretations of ammonia oxidizer community structural composition with provision of a strong basis to establish robust testable hypotheses on the competitiveness between AOB and AOA. Moreover, after this evaluation, managing soils agronomically for potential utilization of metabolic functions of ammonia oxidizers would be easier.

SELECTION OF CITATIONS
SEARCH DETAIL
...