Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 854: 158791, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108841

ABSTRACT

Antibiotics as a selection pressure driving the evolution of soil microbial communities is not well understood. Since microbial functions govern ecosystem services, an ecological framework is required to understand and predict antibiotic-induced functional and structural changes in microbial communities. Therefore, metagenomic studies explaining the impacts of antibiotics on soil microbial communities were mined, and alterations in microbial taxa were analyzed through an ecological lens using Grimes's Competitor-Stress tolerator-Ruderal (CSR) model. We propose considering antibiotics as the primary abiotic factor mentioned in the CSR model and classifying non-susceptible microbial taxa as degraders, resistant, and resilient groups analogous to competitors, stress tolerators, and ruderal strategists, respectively. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were among the phyla harboring most members with antibiotic-resistant groups. However, some antibiotic-resistant microbes in these phyla could not only tolerate but also subsist solely on antibiotics, while others degraded antibiotics as a part of secondary metabolism. Irrespective of their taxonomic affiliation, microbes with each life strategy displayed similar phenotypic characteristics. Therefore, it is recommended to consider microbial functional traits associated with each life strategy while analyzing the ecological impacts of antibiotics. Also, potential ecological crises posed by antibiotics through changes in microbial community and ecosystem functions were visualized. Applying ecological theory to understand and predict antibiotics-induced changes in microbial communities will also provide better insight into microbial behavior in the background of emerging contaminants and help develop a robust ecological classification system of microbes.


Subject(s)
Anti-Bacterial Agents , Microbiota , Soil/chemistry , Soil Microbiology , Bacteria
2.
Environ Sci Pollut Res Int ; 29(40): 60212-60231, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35416578

ABSTRACT

A sectorial approach for assessing heavy metal pollution in rivers neglects the inter-relationship between its environmental compartments and thus fails to report realistic pollution status and associated ecological and human health risks. Therefore, a systems approach was adopted to assess heavy metal pollution and associated risks in the Yamuna River (Delhi, India), one of the world's most polluted and populated river-city pairs. Sampling sites selected along the river with distinct land use were uncultivated natural floodplain vegetation, marshy area, invasive community, arable land, and human settlements. The multivariate analysis identified sources of pollutions (Pb, Cd, Cr, and Ni [anthropogenic]; Fe and Zn [geogenic]). Across the land use, a high log Kp value of Zn and Pb in water-soil phase than in water-sediment phase indicates their long-range transfer, whereas low log Kp (water-soil) of Cd suggests river sediments as its reservoirs. Comparison of pollution indices of Cd, Cr, and Pb in water, sediment, and soil across the land use suggested the role of vegetation in reducing pollution in the environment. Ecological risk also gets reduced progressively from water to sediment to the soil in naturally vegetated sites. Similarly, in river water, Cr, Cd, Ni, and Pb pose carcinogenic and non-carcinogenic risks to adults and children, which are also reduced in sediments and soil of different vegetation regimes. This study showed the eco-remediation services rendered by natural vegetation in reducing pollution and associated ecological and human health risks. To conclude, using a systems approach has significance in assessing pollution at the ecosystem level, and focusing on riverbank land use remains significant in developing methods to reduce pollution and ecological and human health risks for sustainable riverbank management.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adult , Cadmium/analysis , Child , China , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/analysis , Humans , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Rivers , Soil , Systems Analysis , Water/analysis , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 826: 154038, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35202698

ABSTRACT

Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.


Subject(s)
Bioelectric Energy Sources , Azo Compounds/chemistry , Electricity , Electrodes , Wastewater/chemistry
4.
J Environ Manage ; 256: 109908, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31822458

ABSTRACT

Phenolics drive the global economy, but they also pose threats to soil health and plant growth. Enzymes like peroxidase have the potential to remove the phenolic contaminants from the wastewater; however, their role in restoring soil health and improving plant growth has not yet been ascertained. We fractionated efficient peroxidases (MPx) from leaves of an invasive species of Mesquite, Prosopis juliflora, and demonstrated its superiority over horseradish peroxidase (HRP) in remediating phenol, 3-chlorophenol (3-CP), and a mixture of chlorophenols (CP-M), from contaminated soil. MPx removes phenolics over a broader range of pH (2.0-9.0) as compared with HRP (pH: 7.0-8.0). In soil, replacing H2O2 with CaO2 further increases the phenolic removal efficiency of MPx (≥90% of phenol, ≥ 70% of 3-CP, and ≥90% of CP-M). MPx maintains ~4-fold higher phenolic removal efficiency than purified HRP even in soils with extremely high contaminant concentration (2 g phenolics/kg of soil), which is desirable for environmental applications of enzymes for remediation. MPx treatment restores soil biological processes as evident by key enzymes of soil fertility viz. Acid- and alkaline-phosphatases, urease, and soil dehydrogenase, and improves potential biochemical fertility index of soil contaminated with phenolics. MPx treatment also assists the Vigna mungo test plant to overcome toxicant stress and grow healthy in contaminated soils. Optimization of MPx for application in the field environment would help both in the restoration of phenolic-contaminated soils and the management of invasive Mesquite.


Subject(s)
Prosopis , Soil Pollutants , Biodegradation, Environmental , Hydrogen Peroxide , Introduced Species , Peroxidases , Phenols , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...